REFINEMENT OF BIOLOGICAL METRICS IN THE DEVELOPMENT OF BIOLOGICAL CRITERIA FOR REGIONAL BIOMONITORING AND ASSESSMENT OF SMALL STREAMS IN IDAHO

1991-1992

FINAL REPORT

Prepared by

Christopher T. Robinson and G. Wayne Minshall

Stream Ecology Center
Department of Biological Sciences
Idaho State University
Pocatello, Idaho 83209

March 1992

REFINEMENT OF BIOLOGICAL METRICS IN THE DEVELOPMENT OF BIOLOGICAL CRITERIA FOR REGIONAL BIOMONITORING AND ASSESSMENT OF SMALL STREAMS IN IDAHO

1991-1992

FINAL REPORT

Prepared by

Christopher T. Robinson and G. Wayne Minshall

Stream Ecology Center
Department of Biological Sciences
Idaho State University
Pocatello, Idaho 83209

March 1992

TABLE OF CONTENTS

List of Tables ii
List of Figuresiii
Summary 1
Introduction
Methods 3
Selection of study sites 3
Refinement of the habitat assessment procedure 13
Field sampling 13
Data analysis 17
Results 23
Habitat assessment and evaluation
Macroinvertebrate metric development 30
Macroinvertebrate taxa analysis
Fish metric development 47
Discussion 55
Acknowledgments
Literature Cited 60
Appendix A: Location maps 64
Appendix B: MDA results for habitat measures 88
Appendix C: MDA results for macroinvertebrate data 89
Appendix D: MDA results for macroinvertebrate taxa data 90
Appendix E: Raw data from macroinvertebrate samples 93
Appendix F: Species names for macroinvertebrate notations
used in Tables 11 and 12100

LIST OF TABLES

Table	1.	Specific locations of Snake River Plain and
		Northern Basin and Range Ecoregion study sites 4
Table	2.	Habitat assessment evaluation sheet 9
Table	3.	Summary of habitat measures recorded for each
		study site12
Table	4.	Summary of habitat assessment category scores
		for each study stream14
Table	5.	Modified habitat score based on factors shown
		important by statistical analysis15
Table	6.	Absolute macroinvertebrate values and respective
		scores19
Table	7.	Fish summary metrics derived from electrofishing21
Table	8.	Number of fish collected by electrofishing22
Table	9.	Modified macroinvertebrate metric scores34
Table	10.	Macroinvertebrate taxa that comprised greater
		than 5% of the assemblage for any one site43
Table	11.	Metric scores for twelve macroinvertebrate taxa
		found important based on MDA results45
Table	12.	Metrics and corresponding scores derived from
		fish collections48

LIST OF FIGURES

Figure 1.	Comparison of subjective and mediately
	I was a subjective and modified nabitat
	assessment scores for upland, lowland, and impacted
Di musa o	stream sites25
Figure 2.	Modified habitat assessment score regressed
	against the original habitat assessment score26
Figure 3.	Subjective categories and respective scores for
	upland, lowland, and impacted stream sites27
Figure 4.	Objective categories and respective scores for
	upland, lowland, and impacted stream sites28
Figure 5.	Objective categories (continued) and respective
	scores for upland, lowland, and impacted sites29
Figure 6.	Discriminant scatterplot of habitat categories31
Figure 7.	Discriminant scatterplot of macroinvertebrate
	metrics32
Figure 8.	Mean absolute values for macroinvertebrate
	metrics of upland, lowland, and impacted sites33
Figure 9.	Regression of the refined macroinvertebrate
	metric score35
Figure 10.	Mean macroinvertebrate metric scores36
Figure 11.	Regression of the macroinvertebrate metric score37
Figure 12.	Regression of macroinvertebrate metric score
	determined from a qualitative sample against
	score determined from a quantitative sample39
Figure 13.	Mean macroinvertebrate metric scores for
	quantitative and qualitative samples40
Figure 14.	Macroinvertebrate metric scores regressed against
	the modified habitat assessment score41
Figure 15.	Comparison of absolute values for specific
	macroinvertebrate taxa among stream types42
Figure 16.	Regression of combined taxa scores and refined
	macroinvertebrate metric score against the
	habitat assessment seems
	habitat assessment score

LIST OF FIGURES (cont.)

Figure 17.	Mean absolute values of fish metric scores for
	upland, lowland, and impacted stream sites49
Figure 18.	Fish metric scores for upland, lowland, and
	impacted stream sites51
Figure 19.	Fish metric score regressed against the habitat
	assessment score52
Figure 20.	Regression of fish habitat score on habitat
	assessment score53
Figure 21.	Number of fish collected on the first
	electroshocking pass regressed against estimated
	fish abundance from the three-pass method54

SUMMARY

The primary goal of the project was to refine and test a series of biotic metrics for assessing biological integrity to eventually develop biological criteria for demonstrating recovery or degree of impact for freshwater ecosystems. A standardized methodology proved effective for comparing and combining data from the previous year of study. We found a quantitative sample (modified Hess sampler, $250-\mu m$ mesh) to be as fast and provide additional information for macroinvertebrates (e.g., organism density and biomass) and better resolution among stream types than a qualitative kick sample. In addition, a single pass of the electrofisher was effective for fish in streams with low turbidity and low fish densities, but a three-pass approach was needed when streams were turbid and/or had high fish densities.

The addition of some quantitative variables (e.g., maximum water temperature, nitrate and phosphorus levels) for assessing aquatic habitats were important or useful in distinguishing between ecoregions and among stream types. Seven metrics for macroinvertebrates (EPT richness, H' diversity, %EPT, HBI, Simpson's Index, % dominance, and % Filterers) were found important for distinguishing among stream types for the two ecoregions. Six metrics for fish were found important for distinguishing among-stream types between the two ecoregions. These metrics focused primarily on the Salmonidae assemblage or degree of tolerant taxa in the fish assemblage. The data suggest the current refined biotic metrics are suitable for monitoring biological integrity for streams in the Northern Basin and Range and Snake River Plain ecoregions.

INTRODUCTION

Rapid bioassessment has become an important tool in assessing the biological integrity of freshwater systems (Plafkin et al. 1989, Karr et al. 1986, Karr 1991). Rapid bioassessment attempts to combine quantitative aspects of water quality with qualitative biological conditions using a regional approach (Hughes et al. 1990). The regional approach provides a methodology for assessing biological intergrity and facilitating the development of recovery criteria among different ecoregions. Numerous states have adopted an ecoregion approach for assessing biological conditions (e.g. Fausch et al. 1984, Gallant et al. 1989). Indeed, the state of Idaho recently drafted a number of monitoring protocols for assessing biological integrity using both fish (Chandler and Maret 1991) and macroinvertebrates (Clark and Maret 1991) in conjunction with habitat evaluation guidelines (Burton 1991, Burton et al. 1991). The present study incorporated rapid bioassessment protocols for evaluating the biological integrity of two ecoregions, the Northern Basin and Range and Snake River Plain, located within Idaho.

The overall goal of this project was to further develop and test a biological assessment program for small (2nd-4th order) streams in the Snake River Plain (SRP) and Northern Basin and Range (NBR) ecoregions of southern Idaho (Robinson and Minshall 1991). Specific objectives were fourfold:

- (1) To establish an initial reference data base from a spectrum of "least" impacted or disturbed stream habitats in the two ecoregions;
- (2) To demonstrate the utility of the ecological assessment approach by comparing biological conditions in environmentally impacted streams with conditions in reference streams;

- (3) To examine a variety of biotic metrics used to assess biological integrity and determine their applicability to conditions found in the Snake River Plain and Northern Basin and Range ecoregions; and
- (4) To determine if reference streams differ significantly between the two ecoregions.

Reference streams were partitioned to cover both upland (wooded-high gradient) and lowland (low gradient) habitat types. Impacted streams used for validation were anthropogenically perturbed locations representative of the major land use practice in the area: livestock grazing. Special effort was made to select designated "stream segments of concern" (Clark 1990, Dunn 1990). An additional objective of this project was to develop a standardized field collection methodology for use by resource managers in biomonitoring.

METHODS

Selection of Study Sites

Study sites were selected from candidate streams by reviewing existing literature concerning site conditions, discussions with various agency personnel (Bureau of Land Management, Idaho Division of Environmental Quality, Idaho Department of Fish and Game, and United States Forest Service) and private land owners, and by field reconnaissance (Table 1). Maps of specific site locations are included in this report as Appendix A. Thirty-nine of 70 streams examined during the summers of 1990 and 1991 were selected for field sampling and data analysis.

Stream types analyzed included upland, lowland, and impacted lowland sites on small 2nd-4th order streams (Strahler 1957).

Table 1. Specific locations of study sites examined by field reconnaissance and for calculations (*).

STREAM	7.5 TOPOGRAPHIC	COUNTY	LONGITUDE	LATITUDE	TOWNSHIP	PANGE	SECTION	ELEVATION
*Green	Elba	Cassia	113°43'	42°15'	T14S	R24E	11	1772
*Stinson	Cache Peak	Cassia	113°40'	42"15'	T13S	R24E	33	1848
*Trapper	Severe Springs	Cassia	114°08'	42°10'	T15S	R20E	10	1612
*Buck	Dish Pan	Owyhee	115°25'	42°00'	T16S	R09E	28	1590
*Cottonwood	O'connor Ridge	Cassia	113°40'	42°15'	T13S	R24E	23	1500
Goose (Upper)	Timber Butte	Cassia	114°15'	42°05'	T15S	R19E	31	1848
Six Mile	Strevell	Cassia	113°10'	42°07'	T15S	R28E	16	1757
*Rock (3rd Fork)	Grandview Peak	Cassia	114°15'	42°15'	T13S	R19E	32	1575
Rock (4th Fork)	Grandview Peak	Cassia	114°15'	42°15'	T13S	R19E	32	1575
Big Cottonwood	Buckhorn Canyon	Cassia	114°05'	42°15'	T13S	R21E	30	1515
Ef Jarbridge	Murphy Hot Springs	Owyhee	115°20'	42°00'	T16S	R09E	25	1590
Trout	Mahogany Butte	Cassia	114°10'	42°05'	T16S	R19E	12	1818
Eight Mile	Sandrock Canyon	Cassia	113°10'	42°10'	T15S	R28E	4	1757
Cold	Blue Hill	Cassia	113°55'	42°07'	T15S	R22E	21	1727
*Little Jack's	Bighorse Basin Gap	Owyhee	116°00'	42°35'	T08S	R03E	16	1072
*Lake Fork	Sublett	Cassia	113°02'	42°20'	T12S	R29E	34	1634
*Station Fork	Sublett	Cassia	113°00'	42°20'	T13S	R29E	1	1636
*Cottonwood	Hill Pasture	Owyhee	116°05'	42°32'	T10S	R03E	27	1455
*Big Jack's (Upper)	Hill Pasture	Owyhee	116°02'	42°35′	T10S	R04E	18	1333
Vinyard	Kimberly	Jerome	114°20'	42°35'	TIOS	R18E	4	1067
Salmon Falls	Roseworth Ne	Twin Falls	114°50'	42°25'	T11S	R14E	19	1136
Devil's Corral	Kimberly	Jerome	114°20'	42°35'	T09S	R18E	32	1030

STREAM	7.5 TOPOGRAPHIC	COUNTY	LONGITUDE	LATITUDE	TOWNSHIP	PANGE	SECTION	ELEVATION
Sand Springs	Thousand Springs	Gooding	114°50'	42°37'	T08S	R14E	17	939
Dove	Taylor Canyon	Twin Falls	114°55'	42°05'	T15S	R13E	26	20120
*Sheep	Triguero Lake	Owyhee	115°45'	42°15'	T14S	R06E	15	1467
*Big Jack's (Lower)	Wickahoney Cross	Owyhee	116°00'	42°35'	T10S	R04E	4	1242
*Cassia	O'connor Ridge	Cassia	113°30'	42°15'	T13S	R25E	22	1500
*Mary's	Buckhorn	Owyhee	115°55'	42°10'	T14S	R04E	27	1730
Duncan	Hill Pasture	Owyhee	116°00'	42°34'	T10S	R04E	19	1364
*Duncan 2	Hill Pasture	Owyhee	116 ⁰ 04'	42 ⁰ 31'	T10S	R03E	36	1482
*Shoshone	Magic Hot Springs	Twin Falls	114°30'	42°02'	T16S	R16É	24	1636
Deep	Buhi	Twin Falls	114°50'	42°35'	T10S	R14E	8	1121
*Deep 2	Slack Mountain	Owyhee	116 ⁰ 41	42 ⁰ 35	T10S	R03W	3	1580
Goose (Lower)	Blue Hill	Cassia	113°55'	42°05'	T15S	R22E	31	1467
*Trapper (Lower)	Severe Springs	Cassia	114°03'	42°10'	T15S	R21E	6	1539
Billingsley	Tuttle	Gooding	114°50'	42°50'	T07S	R14E	19	909
*Mink	Oneida Narrow Resevoir	Franklin	111 ⁰ 39'	42 ⁰ 16'	T13S	R41E	22	1647
*Bloomington	Paris	Bear Lake	111 ⁰ 30'	42 ⁰ 11'	T14S	R42E	23	1891
*W F Mink	Clifton Creek	Bannock	112 ⁰ 26'	42 ⁰ 44'	T08S	R34E	13	1647
*Timber	Iron Creek Point	Custer	113 ⁰ 26'	44 ⁰ 25'	T13N	R25E	25	2330
*S F Soldier	Phillips	Camas	114 ⁰ 50'	43 ⁰ 30'	T02N	R14E	19	1848
*Cherry	Galena	Blaine	114 ⁰ 38'	43 ⁰ 51'	T06N	R15E	14	2190
*Bear	Copper Basin	Custer	113 ⁰ 56'	43 ⁰ 45'	T05N	R21E	22	717
*Ramey	Copper Basin	Custer	113 ⁰ 56'	43 ⁰ 49'	TO6N	R21E	27	640
*Coyote	Galena	Blaine	114 ⁰ 39'	43 ⁰ 51	T06N	R15E	15	2199
12				**** **** **** **** **** **** **** **** ****				

C

Table 1 (cont.)

STREAM	7.5 TOPOGRAPHIC	COUNTY	LONGITUDE	LATITUDE	TOWNSHIP	PANGE	SECTION	ELEVATION
*Big Willow	Squaw Butte	Payette	116 ⁰ 28'	44 ⁰ 05'	T09N	R01W	29	909
*Cold Springs	Goodman Flat	Gooding	115 ⁰ 21'	43 ⁰ 08'	T03S	R03S	26	1183
*Current	Slack Mountain	Owyhee	116 ⁰ 45'	42 ⁰ 35'	T09S	R03W	31	1617
*Spring	Riley Butte	Washington	116 ⁰ 25'	44 ⁰ 21'	T12N	R01W	24	1049
*S F Mink	Clifton Butte	Bannock	112 ⁰ 25'	42 ⁰ 41'	T08S	R35E	31	1769
*Wolverine	Wolverine _	Bingham	111 ⁰ 12'	43 ⁰ 17'	T02S	R39E	6	1678
*Camas	Spring Creek Resevior	Camas	114 ⁰ 39'	43 ⁰ 19'	T01S	R15E	22	1501
*Rock (Magic)	Richardson Summit	Blaine	114 ⁰ 24'	43 ⁰ 26	T01N	R17E	11	1571
*Rock (Twin) S-5	Stricker Butte	Twin Falls	114 ⁰ 21'	42 ⁰ 27'	T11S	R18E	23	1220
*Rock (Twin) S-6	Grand View Peak	Twin Falls	114 ⁰ 18'	42 ⁰ 21'	T12S	R18E	24	1332
*Rock (Twin) S-8	Grand View Peak	Cassia	114 ⁰ 14'	42 ⁰ 17'	T13S	R19E	17	1525
Soldier	Phillips	Camas	114 ⁰ 50'	43 ⁰ 30'	T02N	R14E	19	1848
Soldier (above S F)	Phillips	Camas	114 ⁰ 50'	43 ⁰ 30'	T02N	R14E	19	1848
Willow :	Macon	Camas	114 ⁰ 30'	43 ⁰ 20'	T01S	R16E	3	1495
Portneuf	Chesterfield	Caribou	112 ⁰ 00'	42 ⁰ 50'	T07S	R37E	26	1610
Birch	Mink Creek	Franklin	111 ⁰ 40'	42 ⁰ 15'	T13S	R41E	9	1708
Newman	Easley Hot Springs	Blaine	114 ⁰ 40'	43 ⁰ 51'	T06N	R15E	15	2196
Webber	Heart Mountain	Clark	112 ⁰ 40'	44 ⁰ 25	T12N	R09W	15	2074
Iron	Iron Creek Point	Custer	113 ⁰ 25'	43 ⁰ 25'	T12N	FI25E	12	2245
W F Star Hope	Copper Basin	Custer	113 ⁰ 56'	43 ⁰ 45'	T05N	R21E	22	763
W F Shootly	Snow Creek	Owyhee	116 ⁰ 16'	42 ⁰ 45'	TOBS	R01E	13	1373
Clover	Davis Mountain	Gooding	114 ⁰ 55'	43 ⁰ 10'	TO3S	R13E	19	1513

σ

Table 1 (cont.)

STREAM	7.5 TOPOGRAPHIC	COUNTY	LONGITUDE	LATITUDE	TOWNSHIP	RANGE	SECTION	ELEVATION
Nip & Tuck	Wickiup Creek	Owyhee	116 ⁰ 40'	42 ⁰ 40'	T09S	R03W		1830
Shoofly	Ox Lake	Owyhee	116 ⁰ 14'	42 ⁰ 45	T08S	R02E	9	1281
Corral	Corral	Camas	114 ⁰ 50;	43 ⁰ 20'	TOIS	R13E	21	1548

Note. 7.5 topographic quad maps, and elevation in meters.

Upland sites were characterized as having greater slopes, more turbulent flow, and being higher in elevation than lowland sites. The impacted sites were representative of lowland areas perturbed primarily by livestock grazing and other nonpoint source agricultural inputs; impacted streams served for metric validation. The 39 sites analyzed were comprised of 16 (11 in SRP, 5 in NBR) upland, 10 (8 in SRP, 2 in NBR) lowland, and 13 (9 in SRP, 4 in NBR) impacted lowland streams. The number of sites examined in detail were limited by budgetary constraints. The unbalanced sample sizes were largely the result of an administrative decision to emphasize initially SRP streams and by the difficulty in locating satisfactory lowland reference sites.

Field reconnaissance provided an important avenue for final selection of study sites from candidate streams. A two-part habitat assessment data sheet was used during field reconnaissance (Table 2). The first page provided for detailed information on physical and chemical characteristics (e.g., stream slope, elevation, width/depth ratio, mean width, % canopy cover, land-use, vegetative characteristics, discharge (Platts et al. 1983), riparian conditions, substrate measures, water temperature, pH, specific conductance, alkalinity, and turbidity) for a site. The second part included a habitat assessment field survey which allowed for the tally of an overall habitat score based upon the qualitative ranking of 12 categories (based from Plafkin et al. 1989, Barbour and Stribling in press, Clark and Maret 1991). The habitat assessment field data sheet currently involves categories based upon prevailng habitat conditions, i.e., whether a site consists predominantly of riffle/run or glide/pool conditions (Table 2). Categories were modified to take into account these prevailing habitat conditions of a site.

Onsite field reconnaissance and habitat assessment generally required about three person-hours per stream once at the site.

Initial logistic planning in the laboratory using 1:100,000-scale

Table 2. Habitat evaluation field data sheet.

IDAHO ECOREGION - HABITAT ASSESSMENT FIELD DATA SHE	ET
ECOREGION:	
STREAM/TYPE:	
DATE/RECORDER:	
GENERAL PHYSICAL CHARACTERISTICS	
STREAM ORDER:	
STREAM SLOPE:	
SITE ELEVATION:	
DISCHARGE:	
<u>LAND-USE</u>	
ADJACENT TO STREAM:	
WATERSHED:	
IN-STREAM VEGETATION:	
RIPARIAN VEGETATION:	
WATERSHED VEGETATION:	
BANK EROSION PRESENT:	
NPS POLLUTION EVIDENT:	
STREAM WIDTH:,,,,	
DEPTH: (1),,,,,,, _	
(2),,,,,,,	
(3)	
(4)	
(5),,,,,,,,,_	
VIDI COTTU	
VELOCITY:,,,,,,,,,,,,,,,,,	
PROP #, TIME: , PERCENT CANOPY COVER:	
PERCENT CANOPI COVER: DIDADIAN ZONE WIDDEN + bb 1ft bb	
RIPARIAN ZONE WIDTH: rt bk,, lft bk,, PREDOMINANT SUBSTRATE:a-axis,, b-axis,	
PREDOMINANT SUBSTRATE. a-axis,	
WATER QUALITY	
TEMPERATURE:	
ALKALINITY:	
pH:	
CONDUCTIVITY:	
TURBIDITY:	
HARDNESS:	
NITROGEN:	
WEATHER CONDITIONS:	
PHOTOGRAPH NUMBER:	
COMMENTS	: -
ACCESSIBILITY:	
LOCATION:	
OWNERSHIP:	
	•

Table 2. (cont.)

HABITAT ASSESSI	MENT FIELD D	ATA SCORING	SHEET	
COREGION: STREAM/TYPE: DATE/RECORDER:			SCORE	
RIFFLE/RUN (UPLAND)		GLIDE/POOI	L (LOWLAN)	0)
. SUBSTRATE/COVER		1. SUBSTR	ATE/COVER	
2. EMBEDDEDNESS		2. POOL S	UBSTRATE '	TYPE
. FLOW/VELOCITY		3. POOL V	ARIABILIT	Y
. CANOPY COVER		4. CANOPY	COVER	
. CHANNEL ALTERATION		5. CHANNE	L ALTERAT	ION
BOTTOM SCOURING AND D	EPOSITION	6. DEPOSI	TION	
. POOL/RIFFLE or RUN/BE	ND RATIO	7. CHANNE	L SINUOSI	TY
3. WIDTH/DEPTH RATIO		8. WIDTH/	DEPTH RAT	OI
O. UPPER BANK STABILITY		9. UPPER	BANK STAP	BILITY
10. BANK VEGETATION		10. BANK	VEGETATIO	ON
11. STREAMSIDE COVER		11. STREA	MSIDE CO	/ER
12. RIPARIAN WIDTH		12. RIPAR	RIAN WIDT	j
RANKINGS: PARAMETER	EXCELLENT	GOOD	FAIR	POOR
1-4 5-8 9-12	16-20 12-15 9-10	11-15 8-11 6-8	6-10 4-7 3-5	0-5 0-3 0-2

planimetric maps made field reconnaissance more efficient. This procedure was emphasized due to the often remote nature and widely separated locations of field sites. For example, field site locations ranged from the Idaho/Wyoming border to the Idaho/Oregon border and often were accessible via a dirt track or by foot. However, some sites were examined on an impromptu basis while en route to a scheduled site. We recommend that field crews also complete a habitat assessment field data sheet at the time of sampling if habitat conditions change since time of field reconnaissance.

Refinement of the Habitat Assessment Procedure

Other quantitative measures of habitat conditions were recorded at each sampled site in addition to the physical and chemical measures listed above (Table 3). These measures included a width/depth ratio and mean width averaged from five channel transects each 30m apart, % canopy cover, periphyton chlorophyll \underline{a} and ash-free-dry-mass (AFDM)(n=5), total hardness, nitrate, ortho-phosphate, substrate size and embeddedness (n=100), and amount of benthic organic matter (BOM). Nitrate and ortho-phosphate was measured in the field using a HACH kit. Benthic organic matter was quantified from material obtained with the benthic macroinvertebrate samples. Following macroinvertebrate processing, organic matter was determined by drying the sample at 60 $^{\circ}\text{C}$ for 48 h, weighing, ashing at 550 $^{\circ}\text{C}$ for 2 h, rehydrating, redrying for 24 h, and reweighing. difference in dry weights is the quantity of organic matter (as AFDM) for that sample.

Periphyton was collected by scraping a known area from the surface of a stone and collecting the material onto a Whatman GF/F glass fiber filter (see Robinson and Minshall 1986). Upon filtering, the material was kept frozen until analysis in the

Table 3. Summary of habitat measures recorded for each study site. Data for Rock Creek (Twin) sites from Idaho DEQ.

	STATION	# LOC	TYPE	DATE	(m) ELEV	WIDTH/ DEPTH RATIO	MEAN WIDTH (m)	AREA SHOCKED (m-2)	COVER	AFDM (g/cm2)	CHL-a (ug/cm	Q (m3/s)	TEMP (C)	SPEC. COND. (umhos)	ALKA TO (mg/L) I (CaCO3)	OTAL HARD	рН	NO3 (mg/L)	PO4 (mg/L)	SUBS	TRATE	EMBEDD AVG (%)	EDNESS CY (%)	SLOPE	BOM AFDM
	Green Stinson Cottonwood Trapper Bloomington Mink Jrd Fork Timber SF Soldier Buck Cherry Bear Ramey Coyote	RRRRRRRRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		**************************************	7728 50121 5	577-87-7-00-00-8	מתמישה פתשתת שחדה מיני	250 1430 240 1808 2788 2788 2788 2788 2788	6500 5000000 500000 500000 500	0.000 0.000	229 237 257 257 250 250 250 250 250 250 250 250 250 250	2006862225438377 0000000000000000000000000000000000	00077000000000000000000000000000000000	27-59-1 59-1-7-1 159-7-1 160-9-7-2-1 1485-68	19 19 19 19 19 19 19 19 19 19 19 19 19 1	40 139 160 190 10 17 17 17 17 17 17 17 17 17 17 17 17 17	7.3 7.888.77.649 8888.787 88888.1	0.08 0.24 0.01 0.03 0.07 0.03 0.07	0.07 0.06 0.13 0.11 0.09 0.01	0.66 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	25 15 20 40 60 00 10 10 10 10 10 10 10 10 10 10 10 10	70001000 70001000 7000 7000 7000 7000 7	1.01 0.84 0.84 0.87 1.11 1.32 1.30 0.78	200000000000000000000000000000000000000	\$25,5481-30-7-7-0 \$287,557,50481-30-7-7-0 105,50481-30-7-7-0
	Lake Fork Station Little Jack Big Jack Cottonwood Big Willow Cold Springs Current Duncan Spring	BOS SRPP 150		888 888 888 888 888 888 888 888 888 88	1634 1072 1335 1253 1267 1627	201100000000000000000000000000000000000	1874787879770 1874787879770	293 110 352 166 166 85	000000000000000000000000000000000000000	0.000 0.001 0.001 0.001 0.058 0.102 0.245	0.975 977 977 977 977 977 977 977 977 977	0.1554 0.1054 0.	0088070704	284 285 125 125 125 125 125 125 125 125 125	28777147107 2456482155	20500477772	8878787787	0.11 0.09 0.12 0.10 0.09	0.18 0.25 0.44 0.28 0.35	0.59 0.89 0.89 0.76 1.76 1.85 7.85 0.77	93477008105	47777 5000 173077 5000	015	0-0-0-39-5	71603837739 550245739 24162 261
	Cassia Trapper Sherine Sheep Big Jack Mary's Shoshone Camas Deep Rock (Magic) Rock (Twin)	NBBRRRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		\$55,500 \$55,50	55508047750007-60	NATION OF THE PROPERTY OF THE	00000000000000000000000000000000000000	280080487720 40972090055	750005	0.002 0.010 0.011 0.002 0.002 0.002 0.003 0.006 0.006	47.500 53.55 50.55	0.434309 0.0000000000000000000000000000000000	5-15-67-07-04-6-08 5-47-44-85-65-87-6	11517 4772 1752 1081 2870	81 1176 1176 1176 1176 1176 1176 1176 11	106 218 238 238 248 250 131	88887677878	0:00 0:13 0:11 0:22 1:19	0.44 0.08 0.46 0.15	0.257	2377-6507-1-23 5859-07-68037-	42 50 30 27 100 27 75	8:58 1:16 0:00 1:62	01012110000	21-10-50-10-10-10-10-10-10-10-10-10-10-10-10-10
	SUMMARY		(n)		ELEV	WIDTH/ DEPTH RATIO	MEAN WIDTH (m)	AREA SHOCKED (m-2)	COVER	AFDM (ĝ/cm2)	CHL-a (ug/cm	Q (m3/s)	TEMP (C)	SPEC. COND. (umhos)	ALK TO (mg/L) H (CaCO3)	OTAL IARD	рĦ	NO3	P04	SUBS	TRATE AVG	EMBEDDE AVG	EDNESS CV	SLOPE	BOM AFDM
	upland	mean std	15		1914	19:58	3:26 1:21	149:8	<u> </u>	8:84	8:34	8:18	11.8	143:8	71:9 8	32:3	8:3	8:87	8:8\$	8:29	15.7	33:3	1:23	3: \$	28:7
	bnalwol	mean std	10		1389 265	20:77	¥: 3 4	132:2	54:9	8:85	4:78 7:73	8:87	14:3 3:5	145:8	98:1 8	31:3	8:4	8:19	8:38	8:28	18:7	² 3:5	1:59	1:8	23.5 15.6
	impacted	mean std	12		15 99 208	22:34 8:15	5.56 2.14	329.3 220.8	5:2 7:0	0.02 0.06	3.18 2.73	0. 92 2.01	16.9 3.1	183.4 143.3	98.5 10 60.9 6	8.7 5.9	7.9 0.7	0.10 0.07	0.25 0.15	0.96 0.39	8.5 5.0	51:2 24:3	0.84 0.47	1.3 0.9	18.4 14.7
	up-nbr	mean std	8		1685 128	27:37	3:66 1:32		22:2	8:83	8:47	8:18	12.6 3.5	158:5		3:5	8:1	8:18		8:25	15:4	₹8:₹	8:83	3:8	31:9
1	up-srp	mean std	7		2190 347	17:60 3:74	2.81 0.87		65.0 14.6	0.00	1.05	0.11 0.07	10.8 2.8	103.3 41.0		6.3	8.2 0.2	0.05 0.02	0.05 0.04	0.86 0.23	16.2	29.6 13.9	1.17 0.23	5.4 4.2	12.3
	to-nbr	mean std	2		1635	1	2.90 1.60	166:8	8:8	8:81	14:18 13:20	0.10 0.05	10.2 0.0	257.5 23.5		0.0	8.2 0.2			0.79 0.20	1.6 0.3			0.9 0.1	9.4 1.6
	lo-srp	mean std	8		1328 262	22:29 8:33	7:29		67:5 23:7	8:8	7:43	8:87	13:3	118.0 54.8		8: ₹	8:4	8:39		1:01 0:32	13:8	23.5	1:59 3:82	3:5	27.0
	imp-nbr	mean std	4		1701 186	19.93	4.51 2.15	187:5	10.5 9.1	0.01 0.00	4.44 2.34	0.28 0.13	15.0 1.5	295.0 164.9	156.9 17 58.4 4	8.6 8.3	8.6 0.2	8:87		1.09 0.11	7.2 1.8	46.2	0:66 0:67	8:4	14.1 4.6
	imp-srp	mean std	8		1767	23.55 5.84	6:08 1:93	400:3 220:5	3:1	8:83	3:49	1:38	18.0 3.3	179:6	28:5 3	2:3	Z:\$	8:13	8:25	8:89	8:8	<u> </u>	8:33	1:8	79:8

laboratory for chlorophyll \underline{a} and AFDM. Initially, samples were ground in reagent-grade acetone using a Brinkmann tissue homogenizer (Model PT 10/35). Chlorophyll \underline{a} was extracted in reagent-grade acetone and quantified using a Gilford Model 2600 spectrophotometer (APHA 1989). The AFDM of each sample was determined as described above for BOM using the material from chlorophyll \underline{a} analysis.

Multiple Discriminant Analysis (MDA) was completed using habitat measures (Table 3) including the qualitative habitat assessment categories (Table 4) in order to distinguish among stream types and between ecoregions. Analyses were completed on an HP-vectra (model RS/20) PC using the Statistica software program (Statsoft: Statistica 1990). Principal Components Analysis (PCA) also was used to determine important habitat measures for separating sites. Both analyses were found effective in determining important habitat measures and indicated the need to incorporate both qualitative and quantitative measures to describe stream habitat conditions. quantitative measures were scored by proportional scaling of measured values over an arbitrary range of 0 to 15 (maximum score per measure equaled 15) to make them comparable with the habitat assessment categories. Individual scores were summed across measures for each site for an overall habitat score (e.g., see Table 5).

Field Sampling of Benthic Macroinvertebrates and Fish

In 1990, qualitative sampling was completed at all selected sites and additional quantitative samples collected at five of these sites (Robinson and Minshall 1991). In 1991, quantitative sampling was completed on all selected sites and additional qualitative samples collected at ten of these sites. Generally, field sampling for macroinvertebrates and fish was completed in ca. 10 person-hours (e.g., 5 crew members for 2 h) per site, and

Table 4. Summary of habitat assessment category scores for each study stream. Data for Rock Creek (Twin) sites from Idaho DEQ.

STATION	a	LOC	TYPE	SUBSTRATE COVER	EMBED	FLOW VELOCITY	CANOPY	CHANNEL ALTER	BOTTOM SCOUR	POOL RIFFLE	WIDTH DEPTH	BANK STABILITY	BANK VEG	COVER	RIPARIAN WIDTH	SCORE
ireen itinson cottonwood [rapper loomington dink Jf Mink Jf Mink Srd Fork imber SF Soldier Suck therry lean Ramey Coyote	17257150788004010M	RRRRRRRRRPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	9999999999999999999999999999999999999	0080005804004008	2008000585680808	8880458087F04045	200 161 1207 189 190 190 190 190 190 190 190 190 190 19	5655545000045454500	555744740744V5V	111111111111111111111111111111111111111	12214445145154515	100	1000 107 1000 1000 1000 1000	108880000000000000000000000000000000000	100888880680767888	163 153 173 161 162 161
ake Fork Station Station Statle Jack State Jack ColtonHood Sig Willow Cold Springs Current Dumcan Spring	18	NBRPP SRPP SRPP SRPP SRPP SRPP	LO LO LO LO	100807080	880404040680	0008477077	000 200 200 200 200 200 200 200 200 200	5-55-57-5255	14051-15023-151	1055027588	3244414500 10	9 100 100 100 100 100	100000000000000000000000000000000000000	5 600 100 100 100 100	67 109 88 108 8	
Cassia Trapper Trapper Mink Wolverine Sheep Big Jack Mary's Shoshone Camas Deep Rock (Magic) Rock (Twin)	のうないのからいっとう	NBBRRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP		150 COMBOLO	172	1782 1260 1781 1781 1781	NUMBER	6 1 0 7 1) 10 1	100	100000000000000000000000000000000000000	7-00074077V47V		008080808774	8473045743743	677	100
SUMMARY			(n)	SUBSTRATE COVER	EMBED	FLOW VELOCITY	CANOPY COVER	CHANNEL ALTER	BOTTOM SCOUR	POOL RIFFLE	WIDTH DEPTH	BANK STABILITY	BANK VEG	STREAM COVER	RIPARIAN WIDTH	TOTA
upland	mea	n	15	18.3	18:4 1:8	16:3	18.3	13.8	13:8	13:1 1:0	13.8 1.3	8:7	8:8	8:8	8.1 1.2	160. 8.
towland	mea	n	10		15.8 3.7	13.3		14:0	12:1	11.7 2.6	13:2	9:3 1:5	8:8	8:8 1:8	8.3 1.2	145:
impacted	mea	n	12		10.0			6.3	6.6 3.1	9: <u>1</u> 3:3	6.6 4.1	3:2 2:2	7.0 2.6	5:2	4.3 2.5	
up-nbr	mea	n	8		18.9 1.7		17:8	14:9	13.6	13.1 0.8	13:0 13:3	8:5	१: 8	8:8	8.4	
up-srp	mea std	n	. 7		17.9 1.7		19.0 1.1	13.6 1.2	12.3 1.4	13.1	14.7 0.5	9.9 0.3	9.6 0.5			159.
lo-nbr	mea	n	2		18.0 0.0		8:8	13.0 2.0	11.5 2.5	10.5 0.5	7:5	7.0 2.0	9.0 1.0		6.5	
lo-srp	mea	n	ε		15.3 3.9	14:1	17:4	14:3	12.3	12:8	12.6 2.1	8:3	18:8		8:8	
imp-nbr	mea std	n	4		10.3 5.8	-	9.5 4.6	4.3 2.0	5.3	8.5 2.9	7.3 3.3	3.0	7.8 1.6		5.3	92 21
imp-srp	mea	n	ε	_	2:1	19:4	3:7	7:4	3:4	3:4	2:3	3:3	6:6 2:9	§: §	3.1	. 33

Table 5. Modified habitat score based on factors shown important by statistical analyses. Score combines quantitative and qualitative categories.

STATION	# LOC	WIDTH/ DEPTH RATIO	SCR	COVER	SCR	CHL-a	SCR (C)	SCR i	SPEC.	SCR	NO3	SCR PO4	SCR AVG	T EMBEC SCR AVG	SCR	SLOPE	SCR	FLOW	CAN COVER	POOL RIF	BANK STAB	STREAM COVER	RIP	TOTAL SCORE	*PRE- MODIFIED SCORE
Green Stinson Buck Cottonwood 3rd Fork Trapper Bloomingtor Mink WF Mink Timber SF Soldier Cherry Bear Romey Coyote	PPPPPRRRRRRPPPPPPPPPPPPPPPPPPPPPPPPPPP	5	5555504417444550	50000 500000 500000 5000000	155181015450545	27.5000000000000000000000000000000000000	האירותים בירים מורים מירים מירים האירותים מירים	ביין ביין ביין ביין ביין ביין ביין ביין	2770811710000000000000000000000000000000	משיים ביים משיים מיים מיים מיים מיים מיים מיים	0.08 0.201 0.03 0.03 0.07 0.04	10 0.07 15 0.03 15 0.13 15 0.09 15 0.09 15 0.06 15 0.01	200000000000000000000000000000000000000	ביייייייייייייייייייייייייייייייייייי	1044652	200000000000000000000000000000000000000	בייייייייייייייייייייייייייייייייייייי	8800880580mm40m5	0000001078000780	130443001405	100 100 100 100 100	20088800000000	1007868888080808088	741 177 167 167 167 167 167 167 167 167 16	7221
Little Jack Big Jack Cottonwood Lake Fork Station Big Willow Cold Spring Current Duncan Spring	15 SRP 16 SRP 17 SRP 19 NBR 19 SRP 19 SRP 27 SRP 27 SRP 28 SRP	100000000000000000000000000000000000000	1275275444	\$5000000000000000000000000000000000000	1515005	12000000000000000000000000000000000000	BBOCOTOTO 1880COTOTO 7-1880CLUTAN	155	125 125 125 125 125 125 125 125 125 125	ממשיים מיניים	0:11 0:09 0:12 0:09	4 0 18 7 0 24 7 0 35 7 0 35	7 17 6 1 7 5	45.55.2 15.55.2 14.33.2 14.21.20.85.7 18.57	848	8088050550	5-65-5-685-5-28-	168400m20m	208000000000000000000000000000000000000	15501024588	U	100	1008G780808	134 140 108 148 148 144 140	734 450 450 450 450
Big Jack Cassia Sheep Mary's - Trapper - Shoshope SF Mink Wolverine Camas Deep Rock (Magic	786012500125 786012500125 786012500125 786012500125	022747488878427 237077619078427	440475050555	2000000		8.4153482 416348 416348 41	11227-1-1228-1	12004000-00	1515 1515 1517 1517 1517 1517 1517 1517	10044403003351	0.00 0.13 0.11 0.06 0.22	15 0.44 3 0.06 14 0.23 1 0.16	17506037777173 10688700037 14138	14 29.8 13 26.9 14 22.2 15 500.5 16 27.0	8 9 6 0	1021110101014	620,666,020,031	157078820-7-6	55555555555555555555555555555555555555	13 13 13 13 13 13 13 13 13 13 13 13 13 1	7771104111000	58027-447-MB748	161673713864	892 1007 1001 1005 887 587 877 887	111 100 100 60 108 108 27 27
UPLAND	mean	19.6	!	54.1		0.74	11.8		144		0.07	0.06	15.7	33.6		5.4			-						
LOWLAND	mean	20.8	!	54.0		4.78	14.3		146		0.10	0.30	10.7	23.5		1.8									
IMPACTED	mean	21.4		5.2		3.18	16.9		183		0.10	0.27	8.5	47.8		1.3									
HABITAT SCO	RE																								
optimal	11-15	<19.6		>50		<0.74	<12.0		<150		<0.07	<.10	>15.0			>3.0									
marginal		19.6-21.	4 7	25-50		75-2.0	12-14		50-200		.0710					1-3									
poor	0-5	>21.4		<25		>2.0	>14		>200		>.10	>.20	<10.0	>50		<1									

only two sites typically were completed in one day due to the remote locations of sites. Qualitative sampling followed protocols III and V of the Rapid Bioassessment Protocols recommended by the US Environmental Protection Agency (Plafkin et al. 1989). No separate "leaf pack" (coarse particulate organic matter/shredder) samples were collected due to the paucity of this material in the streams at the time of sampling (midsummer). The rarity of leaf packs during a significant portion of the ice-free period indicates that this metric is of little value in these ecoregions, unless collected in mid to late autumn (the period of leaf fall).

Benthic macroinvertebrates were qualitatively collected from riffle/run habitats using a metal-framed net (1-mm mesh in 1990 and $500-\mu\text{m}$ mesh in 1991, 30cm high x 60cm wide x 100cm long) affixed to a "D"-style scoop shovel handle. A 3-minute sample was proportioned between riffle and run habitats along a 150m length of stream. The material in the net was stored in labeled Whirl-pactm bags and preserved with 10% formalin. The material was transferred into 70% ETOH in the laboratory for sample storage. Quantitative benthic samples were collected at five riffle/run habitats using a modified Hess net $(250-\mu\text{m}$ mesh) (Waters and Knapp 1961). Quantitative sampling followed the methodology described in Platts et al. (1983).

In the laboratory, a 300-count sample of macroinvertebrates was systematically handpicked from each qualitative sample for metric analysis. In 1990, all macroinvertebrates were removed from each quantitative sample. In 1991, the five quantitative samples from a site were combined and a minimum of 300 organisms were systematically handpicked from the composited sample. To maintain the quantitative nature of the Hess sample, the composited sample was placed in a pan equally divided into twelve compartments or cells. All macroinvertebrates were removed from randomly selected cells until 300 or more organisms were removed.

For example, a cell was completely picked of organisms regardless of whether 300 organisms were removed before completing the cell. Values of handpicked specimens were then multiplied by the appropriate constant (12/no. of cells completed) for estimates of total abundance. These data also were used for estimates of macroinvertebrate densities. All picked macroinvertebrates from qualitative or quantitative samples were identified to lowest feasible taxonomic unit (usually species level) and enumerated. Specimens of all macroinvertebrate taxa collected were retained for voucher collections and housed at the Stream Ecology Center of Idaho State University; voucher specimens also were deposited with the Idaho Department of Health and Welfare, Bureau of Laboratories; and the Orma J. Smith Museum of Natural History, Albertson College of Idaho, Caldwell, Idaho.

Fish were collected using a gas-powered Cofelt Model BP-6 backpack electrofisher (110 or 220 AC voltage) downstream from the benthic macroinvertebrate sample section. All sites had at least one pass made with the electrofisher along a maximum 100-m reach of stream encompassing a minimum of two riffles/runs and two pools, or a minimum of 100 fish collected. Blocknets were installed below and above each section prior to electrofishing. Three passes were completed at 15 sites for a quantitative estimate of fish abundance (Zippin 3-step method; Platts et al. 1983). The fish from each pass were identified, counted, weighed, and noted for any external anomalies. A specimen of each species was retained for reference and for verification of field identifications, and all remaining captured fish released. The voucher specimens were deposited in the Orma J. Smith Museum of Natural History, Albertson College of Idaho, Caldwell, Idaho.

Data Analysis

Biotic metrics were calculated from the fish and

macoinvertebrate data from each site as described in Winget and Magnum (1979), Platts et al. (1983), Plafkin et al. (1989), Fisher (1989), Clark and Maret (1991), and Chandler and Maret (1991). Eighteen metrics were calculated for benthic macroinvertebrates: ratio of Ephemeroptera, Plecoptera, and Trichoptera (EPT) abundance to Chironomidae (Ch) and Oligochaeta (O) abundance (EPT/Ch+O); species richness; EPT richness; Hilsenhoff Biotic Index (HBI); Biotic Condition Index (BCI); ratio of EPT/Ch; % dominance; Shannon's diversity index (H'); Simpson's dominance index (C); ratio of Scrapers/Filterers (S/F ratio); ratio of Shredders/Total; macroinvertebrate density; % Scrapers; % Filterers; % Shredders; % EPT taxa; % CH+O; and % Chironomidae (Table 6). The HBI used an assumed scale from O-10 (Hilsenhoff 1988), and regional tolerance values from Wisseman (1990).

Twenty metrics were calculated for fish: Species richness; Number of native species; Number of introduced species; Number of Salmonidae species; Number of benthic insectivore species; Number of intolerant species; Number of tolerant species; % introduced species; % carnivores; % omnivores; % insectivores; % Salmonidae; total density; total biomass; Salmonidae density; Salmonidae biomass; Tolerant density; Tolerant biomass; % Young-of-Year; and Salmonidae condition factor (Table 7). Fish Condition Index was calculated as: (weight in grams)/(total length³)*(10⁵). Fish tolerance, trophic guild, and native/introduced designations were determined from Chandler and Maret (1991) (Table 8).

Values for criteria scores were determined using recommendations in Plafkin et al. (1989) and based on the 95% confidence limits about the mean absolute value for upland (reference) sites. For example, a score of 5 (representing the optimal value for a metric) was recorded if the absolute value for that metric was greater than (or less than, if a low value indicated the optimal condition) the 95% confidence limit about

TYPE	# REP #	NBR/SRP	(CHIR+OLIG)	SCORE	SPECIES RICHNESS	SCORE	RICHNESS	SCORE		SCORE	BC1 INDEX	SCORE	EPT/CHIR	SCORE	% DOM	SCORE	H' DIVERSITY	SCORE	SIMPSON'S INDEX	SCOR
6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAN. QUAN. QUAN. QUAN. QUAN. QUAN. QUAN. QUAN.		128-170-497-7487-777-80	3-1000 1000 1000	1-	JALES AND STORY OF THE PROPERTY OF THE PROPERT	128 11354 1577 178 178 178 178 178 178 178 178 178 1	ひょうりょう ちょうかん しんりょうけいかんりん	70480-1410-14047-64907-14047-1	والان مساوات مسداد المهواول مسمدادا المعادد	76 76 76 76 77 12 10 10 88 12 8 12 8 1 8 1		251-0-05-5-5-5-4-0-0-0-0-0-0-0-0-0-0-0-0-0-		07457516747-6684-7-504	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	157-156170807 6780807 6780808	والمدورية بديدون بداواوراواجداواوراوارامايات أحدادا	0.155 0.156 0.108 0.173 0.173 0.173 0.173 0.173 0.173 0.173	ジャー・サンドントーのインドントンといっている
Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo L	5 QUAL. 7 QUAL. 8 QUAL. 9 QUAL. 8 QUAL. 44 QUAN. 6 QUAN. 7 QUAN.	いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	10.3		200 200 100 171 273 19		7703556011118		1014932470557	•	777 670 881 723 1237 580		1.3 0.7 1.6 21.6 1.5 0.7		250080000000000000000000000000000000000		4 47274754963558 4 47274759643558	0 10	0.15	ע האטוניהטיהלאטיייניהט
		CHURCHELORICANTAMENTALINA	5-18-680-0-10-10-1-1-2-1-2-1-2-1-2-1-2-1-2-1-2-		01-84835-83901-1-00045		nonunnno demmo denm		919001755030377779 4827268074030377786		57.867.687.77.887.77.887.6887.77.87.8	111111111111111111111111111111111111111	5.560890831-96831-002 11.560890831-96831-002	- 1111110101111111111111111111111111111	44778887477745000250 0000000000000000000000000000000	- 1000000000000000000000000000000000000	2 12222221 1 4444868 625	1 137	0 17.807.825.130887.501 3.1-1-10.747.737.47.737.01	***************************************
	SCORE		5 ^{>8.8} 5.7-8.8 <5.7	23	>25,4 .1-25.4 <23.1	1	2.7-14.6 <12.6	3.	\$3.59 \$3.90	95	103.6 7-103.6 95.7	7	. 69-11-49 - 69-11-49 - 7-69	0.	\$0.32 32-0.38 \$0.38	2			<0.18 .18-0.22 >0.22	<u>'</u>
PLAND =19	NEAN STDERR 95% CL MEAN+CL		3:29 8:98		25.36 25.36		18:85 14:86		0:35 0:35 3:80		93:97 7:75 103:60		11.49		0:33 0:05 0:38		8:68 8:18 2:45		9:18 9:02 9:22	

TYPE	# REP # I	NBR/SRP	S/F RATIO	SCORE	X SCRAPERS	SCORE	FILTERERS	SCORE	SHREDDERS	SCORE	% EPT	SCORE	(CHIR+OLIG)	SCORE	% CHIR	SCORE	SCORE MAX=80
000000000000000000000000000000000000000	QUAL. QUIAL.	PARAMETER STATE ST	104004707700077000001788		00000000000000000000000000000000000000	D	0.027 0.027 0.018 0.031 0.087 0.097 0.090 0.090 0.090 0.090	- 1010 いいんいいいいいいいいいいっしい	00031 00031 000000000000000000000000000	マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00000000000000000000000000000000000000		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	AND TOTAL TOTAL STATE ST	0000007-6000000000000000000000000000000	かんてん ちょういん しょうけんしん ちょうかん かんしょう しゅうかん しゅうかん しゅうかん しゅうかん しゅうかん しゅうしゅう しゅう	0847440684488040600
100 100 100 100 100 100 100	15 QUAL. 16 QUAL. 17 QUAL. 18 QUAL. 19 QUAL. 44 QUAN. 45 QUAN. 46 QUAN. 47 QUAN. 48 QUAN.	ひまつい ナー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10000000000000000000000000000000000000		0.105	3	0.042 0.042 0.042 0.042 0.042 0.042 0.05 0.05 0.05	ההתתהתהתה	0.102 0.103 0.103 0.09 0.104 0.01 0.01 0.05	5-5-55-5	040122455558 000000000000000000000000000000000		5.2.2.8.2.68.2.2.61 0.0000000000000000000000000000000000	איזייים וליודעה ולעם אינוה ביי	259962651200		野のようなもののような
IM IM IM IM IM IM IM IM IM	26 QUAL. 27 QUAL. 28 QUAL. 29 QUAL. 31 QUAL. 35 QUAL. 35 QUAL. 36 QUAL. 36 QUAL. 37 QUAN. 38 QUAN. 39 QUAN. 30 QUAN. 31 QUAN. 32 QUAN.	UNITALITY OF THE PROPERTY OF T	7/17/30/04/31/47/05/05/05/05/05/05/05/05/05/05/05/05/05/		000000000000000000000000000000000000000		0-481-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		000000000000000000000000000000000000000		0.233 0.348 0.154	هــايايـــــالىالاراكامــالىالاراكامـــالىمــالىمــالىمــالى	80285185470925103 22736182470925103 0000000000000000000		177274447044704488
	SCORE 3	15	>25.1 5.1-25.1 <15.1	O).35-0.43 <0.35	***************************************	0.06-0.08 0.06-0.08 >0.08		0.05-0.08 <0.05	0	.\$0.61 .53-0.61 <0.53		0.19-0.27	0	<0.12 12-0 17 >0.17		
OPCANI N=19	SIDERR 95% CL MEAN+CL		17.08 10.02 25.16		0:32 0:64 0:08 0:43		0.05 0.01 0.02 0.08		0.03 0.01 0.02 0.08		8:87 8:88 8:81		0:19 0:04 0:08 0:27		0:03 0:05 0:17	•	

Table 7. Summary of fish metrics derived from electrofishing collections in the Snake River Plain and Northern Basin and Range Ecoregions.

STREAM	TYPE R	PECIES ICH	NUMBER NATIVE SPECIES	NUM INTRO(a SPECIES	NUM)SALMON SPECIES	NUM BENTHIC INSECT.	NUM INTOL(b) SPECIES	NUM TOL(c) SPECIES	X INTRO SPECIES	CARNI	OMNIV	INSECT	X SALMON	DENS (#/m2)	810M (g/m2)	SALMON DENS	SALMON BIOM	TOLER DENS	TOLER BIOM	YOY	COND FACTO
Green Stinson Trapper (upper) Buck Cottonwood 3rd Fork Bloomington Mink (Preston) WF Mink (Poc.) Timber SF Soldier Cherry Bear Ramey	50000000000000000000000000000000000000	Variation	0.000	1000	311111111111111111111111111111111111111	Van-Van-4-1-1-VA		000000000000000000000000000000000000000	1000 250 1000 1000 1000 1000 1000 1000 33	100 100 100 100 100 100 100 100 100 100	000000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	0.108	18-1-2-05-2-00-0-0-	0.039 0.075 0.075 0.075 0.075 0.002	15-07-760-800-500-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	25 25 54 10 00 10 60 20 100 100	0.88 0.97 0.88 0.97 1.36 1.32 1.06 1.13 1.06 1.13 1.06 1.13 1.06 1.13 1.06 1.13 1.06 1.07 1.06 1.07 1.06 1.07 1.06 1.07 1.06 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07
Rock (Twin S-8) Little Jack's Big Jack's (upper) Cottonwood Lake Fork Station Fork Big Willow Cold Springs Current Duncan (upper) Spring			1 Chambandhannana	000000000000000000000000000000000000000	0	U-MUNCHURO-MUND	National	0301031103	20000	5050 1050 5050 1005 1005	000000000000000000000000000000000000000	100 100 100 75 100 100 100	505 1503 505 505 1005	0.21 1.02 0.23 0.23 0.23	18402330088	0.101 0.027 0.025 0.044 0.048 0.200	0.407.4627.605.6		0.003 0.503 0.001 0.071 0.000 0.000	60 30 00 18 100 100	0.73 0.86 0.85 0.85
Sheep Big Jack's (lower) Cassia Mary's Trapper (lower) Shoshone SF Mink (Poc.) Wolverine Camas Deep Rock (Magic) Rock (Twin S-5) Rock (Twin S-6)		いんかんいいんりつかいいかん	CANADARDO TOTAL	000000000000000000000000000000000000000	011000000000000000000000000000000000000	こまっているようひゃっともっている	0120110102201	25242-50005500-	17000000000000000000000000000000000000	05 25 50 100 100 25 00 50 50	0 0 0 0 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 83 0 100 100	0 25 25 50 100 20 50 50	0.66 0.06 0.10 0.95 0.06	051077070707070	0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00 3.00 0.05 0.05	0.19 0.27 0.12 0.027 0.000 0.000 0.000 0.000 0.001	0.10 0.28 7.65	10000	NA NA 1.21 NA
SUMMARY	TYPE R	PECIES ICH	NUMBER NATIVE SPECIES	NUM INTRO(a SPECIES	NUM)SALMON SPECIES	NUM BENTHIC INSECT.	NUM INTOL(b) SPECIES	NUM TOL(c) SPECIES	X INTRO SPECIES	% CARNI	X	X INSECT	X SALMON	DENS (#/m2)	BIOM (g/m2)	SALMON DENS	SALMON BIOM	TOLER DENS	TOLER BIOM	X YOY	COND
UPLAND	MEAN STD	1:56	8:83	8:48	1:13	J:38	1:58	8:24	22	81	8	98	81	8:39	3:48	8:88	3:48	8:89	8:83	18	1:02
LOWLAND	MEAN STD	2:78	2.60	8:38	1:29		1:52	1:30	3	49	8	90	4 6	8:88	4:25	8:38	3:53	8:34	1:44	17	0:86 8:32
IMPACTED	MEAN STD	2:64 1:59	2.57 1.45	0.07 0.26			0.86 0.74	1:73	1	31 34	2	84 27	30 34	0.18 0.23	1.99 2.36	0.02 0.06	0.88 1.50	0.10 0.11	1.11	10 27	0.63 0.48
UP-NBR	MEAN STD	1:83	1:13	8:58	1:38		1:83	8:88	8:34	8:91	8:88	1:88	8:17	8:33	3:85	8:33	3.63 2.85	8:88	8:00	8:11	1:08 0:12
UP-SRP	MEAN STD	1:50	8:23	8:43	1:98		1:38	8:13	8:58	8:34	8:88		8:32	8.06 8.03	1:31	8:83	1:17	8:89	8:93	0:25 8:34	8:38
. 0. 400	MEAN STD	3.50 0.50	3:88	8:58	1.50		3.00 1.00	0.50 0.50	0.13 0.13	0.42 0.09	0.00	0.88 0.13	0.42 0.09	0:11 0:02	1:81	0.05 0.00	1.39 0.93	0.04 0.04	0.06 0.06	0.00 0.00	0.90 0.05
LO-NBR											_		0.47	0.70	/ 70	0.20	2 92	0 /2	4 70	0.74	0.87
LO-NBR			7:50 1:22	8:88	0.88 8:33	8:18	d: 13	1:38	8:88	8:37	8:88	8:12	8:34	8:55	3:32	8:38	2.82 2.83	8:74	3:88	8:25	8:33
	MEAN STD MEAN STD	7:52 1:78	7:52 1:73	8:88 8:88	8:33 8:75 8:43		8: 33 8:99	1:38 8:75 8:83	8:88 0:00		8:88 8:88				1:83	0.02 0.03	1.52 1.28		0.09 0.13		0.87 0.48

8:85 8:18 8:85

7:34

0.86 0.14 8:28 8:33 2:23 8:89 8:33 8:14 2:57 8:31 8:53

a = introduced, b=intoterant, c=toterant (chandler and maret 1991).

IMP-SRP

Table 8. Number of fish collected by electrofishing streams in the Snake River Plain and Morthern Basin and Range Ecoregions.

TOLERANCE (a) TROPHIC GUILD (b) NATIVE/INTRODUCED				I/C N	MI I/C I	ı¦c	MI C I	MI I N	I I N	MI/MT I N	MT H N	MT I N	TM\IM I N	TM\IM I H	T O N	
STREAM	TYPE	Ħ	DATE	RAINBOW TROUT	BROOK TROUT	CUTTHROAT TROUT	BROWN TROUT	MOTTLED SCULPIN	TORRENT SCULPIN	REDSIDE SHINER	MOUNTAIN SUCKER	BLUEHEAD SUCKER	SPECKLED DACE	LONGNOSE DACE	CHISEL- MOUTH	SMALLMOUTH BASS
Green Stinson Trapper (upper) Buck Cottonwood 3rd fork Bloomington Mink (Preston) WF Mink (Poc.) Timber SF Soldier Cherry Bear Ramey Coypte	999999999999999999999999999999999999999	1ついっというのできます。	900614 900615 900617 900617 900617 910627 910627 910627 910830 910830	1 12 13 13 13 18	10 8 10 54 17 5	1	1	1 9 12 5					11			
Rock (Twin S-8) Little Jack's Big Jack's (upper) Cottonwood Lake Fork Station Fork Big Willow Current Duncan (upper) Spring		50780450678	900721 900825 900825 900613 900613 910622 910623 910622	10 10 17 18 39			4	11 6 4	3	55 3 1	5		46 1 147	42		
Sheep Big Jack's (lower) Cassia Mary's Duncan (lower) Trapper (lower) Shoshone SF Mink (Poc.) Wolverine Camas Deep Rock (Magic) Rock (Twin S-5) Rock (Twin S-6)		STANDON TO THE PROPERTY OF THE	900620 900618 900618 900725 900821 900821 910627 910623 910623 910623 910623	5 1 17 2 3 1		9		2		19 11 24 31 55 4		20	19 34 3 8 58 38	25	2	. 1

a - Tolerance designations: I=Intolerant, MI=Moderately Intolerant, MT=Moderately Tolerant (Chandler and Maret 1991). b - Tropic guilds: I=Invertivore, C=Carnivore, O=Omnivore

mean absolute value (i.e., mean+95%CL). A score of 3 was recorded if the absolute value fell within the mean absolute value and mean+95%CL value, whereas a score of 1 was recorded for absolute values that were less than the mean absolute value.

Important metrics, for macroinvertebrates and fish, to distinguish among stream types and between ecoregions were determined using Multiple Discriminant Analysis (MDA) and Principal Components Analysis (PCA) using the Statistica software package (Statsoft: Statistica 1991). Once the important metrics were determined for macroinvertebrates or fish, metric criteria scores were summed for each site and regressed against respective habitat assessment scores. Additional regressions were completed for summed metric scores against habitat assessment scores by ecoregion. ANOVA was used to test for differences between the summed criteria metric scores among stream types and between ecoregions (Zar 1984). The post hoc Student Newman Kuels (SNK) test was used to determine differences among means.

Quantitative versus Qualitative Sampling: Metric scores derived from the quantitative macroinvertebrate samples were compared with metric scores derived from the qualitative samples. Linear regression was completed on the quantitatively-based metric scores against respective qualitatively-based metric scores. In addition, separate regressions were completed for quantitative and qualitative metric scores against habitat assessment scores. Fish abundance was quantified using the Zippin 3-pass method. Analyses consisted of regressing 1st-pass abundance against the estimated total abundance for a site.

RESULTS

Habitat Assessment and Evaluation: Habitat assessment scores based on the subjective categorical criteria averaged 160

(range 142-172) for upland sites, 146 (range 111-173) for lowland sites, and 87 (range 27-111) for impacted sites (Table 5). Maximum possible score was 180. In order to reduce the subjective nature of this scoring system and to provide a compromise with quantitative habitat measures, we completed a multiple discriminant analysis to distinguish among stream types using both the qualitative (Table 4) and quantitative (Table 3) measures. This analysis was further used to separate stream types by the two ecoregions. Based on the results of the MDA (Appendix B), six of the twelve subjective measures and ten of the twenty quantitative measures were found important to distinguish among stream types between ecoregions (F=8.98, p=0.0000) (Table 5). Criteria scores of the selected subjective categories were retained, and criteria scores were developed to standardize quantitative categories. A maximum score of 15 was used to indicate optimal habitat (range 11-15) for these quantitative categories (Table 5). Marginal habitat was indicated with scores between 6-10, and poor habitat with scores between 0-5. The absolute values of habitat measures with respective criteria scores can be found in Table 5. The criteria scores were summed for a habitat assessment score for each site.

A maximum score of 235 was possible with the revised habitat evaluation procedure (Table 5). Modified habitat scores for upland sites ranged from 125 to 217, for lowland sites from 87 to 184, and for impacted sites from 51 to 107 (Fig. 1). The regression of the subjective habitat score against the refined habitat assessment score was r²=0.67 (Fig. 2). This relatively low r-square suggests that the inclusion of quantitative measures added important information for evaluating stream/riparian habitats between ecoregions. For example, impacted sites had higher temperatures and nutrient levels than upland sites resulting in lower habitat scores for these variables (Figs. 3-5). In addition, the SRB ecoregion had lower values of specific conductance than NBR ecoregion resulting in higher habitat scores

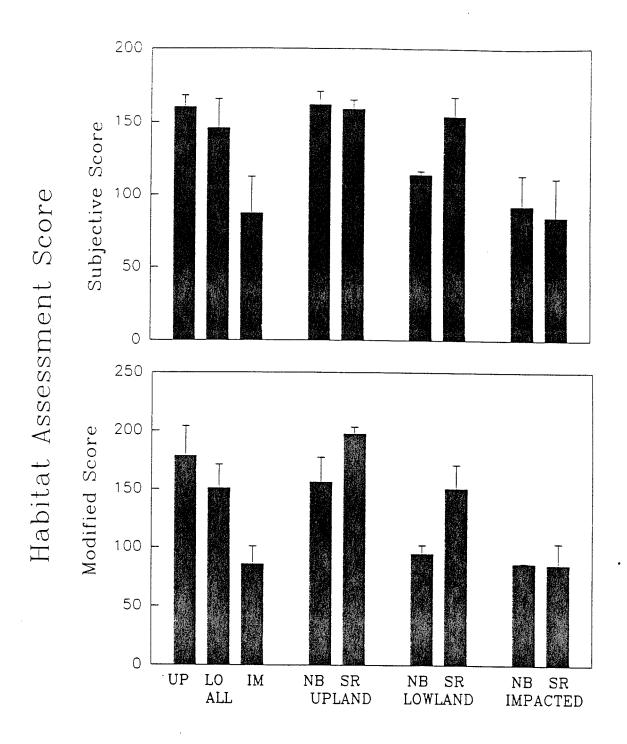
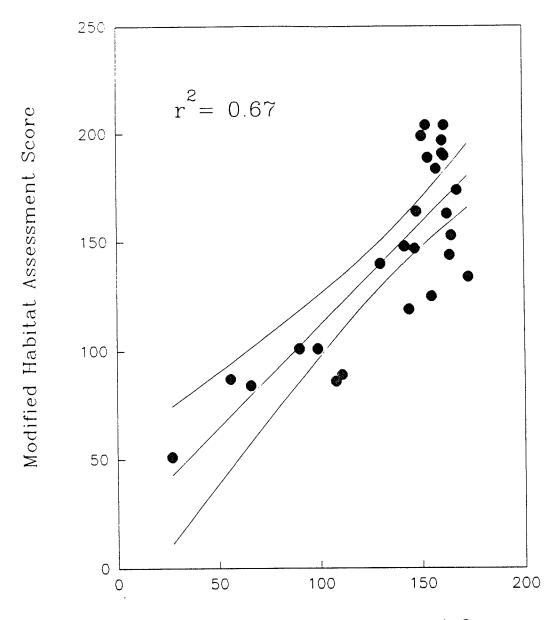



Fig. 1. Subjective and modified habitat assessment scores for upland (UP), lowland (LO), and impacted (IM) stream sites (NB=Northern Basin, SR=Snake River Plain ecoregions) Vertical bars represent one standard deviation from the mean.

Subjective Habitat Assessment Score

Fig. 2. Modified habitat assessment score regressed against the original unmodified habitat assessment score. Outer diagonal lines represent 95% confidence limits.

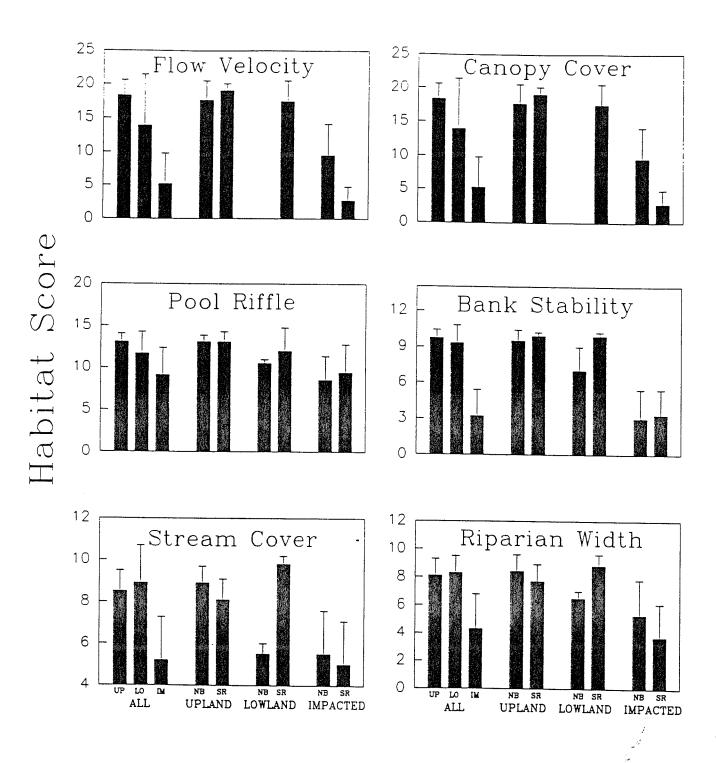


Fig. 3. Qualitative categories and respective scores for upland, lowland, impacted and all sites pooled for Northern Basin and Range (NB) and Snake River Plain Ecoregion (SR) streams. Scores of zero were obtained for flow velocity and canopy cover at NB lowland sites.

Objective Category

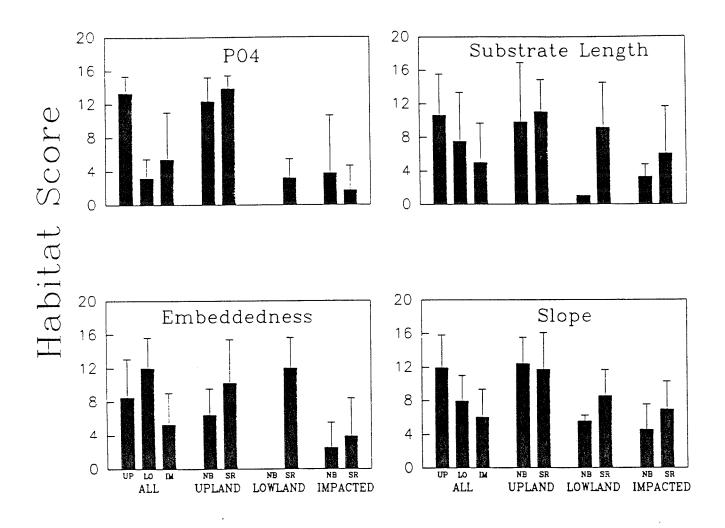
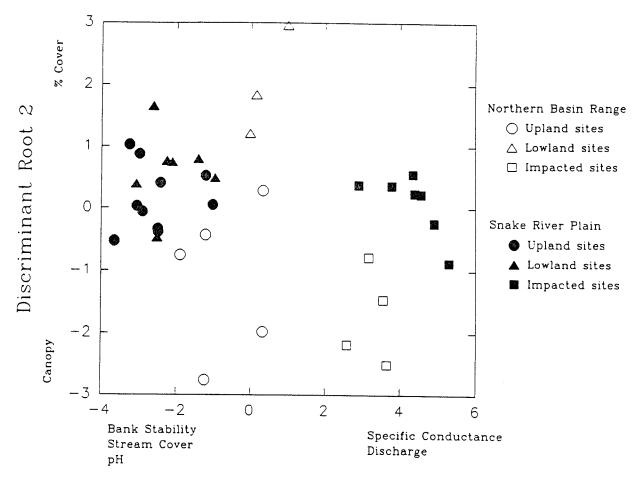


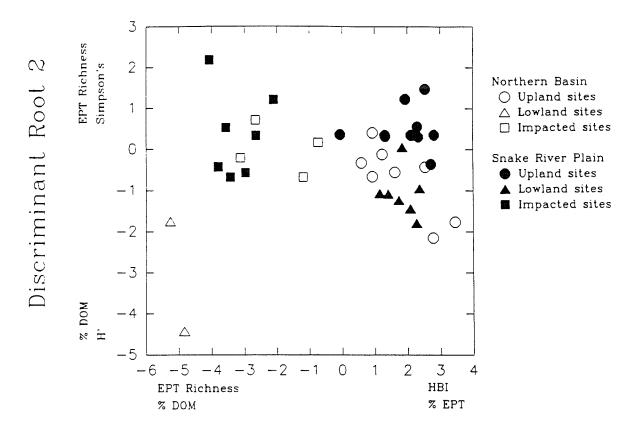
Fig. 4. Objective categories for upland, lowland, impacted and all sites pooled for Northern Basin and Range (NB) and Snake River Plain Ecoregion (SR) streams. Embeddedness and PO4 was not measured at lowland and NB sites.

Objective Category Width/Depth % Cover Habitat Score Chlorophyll a Temperature Specific Conductivity NO_3 NB SR NB SR UPLAND LOWLAND IMPACTED ALL UPLAND LOWLAND IMPACTED


Fig. 5. Quanitative categories and respective scores for upland, lowland, impacted and all sites pooled for Northern Basin and Range (NB) and Snake River Plain Ecoregion (SR) streams. A score of zero was obtained for % cover, and NO $_3$ was not measured at lowland Northern Basin sites.

for this variable in the SRP (Fig. 4). These habitat variables were effective in separating stream types based on the multiple discriminant analysis (Fig. 6). Its important to note that the inclusion of these quantitative measures added very little time to field procedures.

Macroinvertebrate Metric Development: Seven community level metrics were found important (based on PCA, MDA (Appendix C), and multiple linear regression results) for discriminating among stream types: EPT richness, HBI index, % dominance, Shannon's (H') diversity, Simpson's index, % Filterers, and % EPT taxa (Fig. 7). These metrics resulted in a maximum summed score of 35 (Table 9). Scores ranged from 7 to 35 for upland streams, from 11 to 25 for lowland sites, and from 7 to 21 for impacted streams. EPT richness was greater in upland than lowland and impacted streams (Fig. 8). The HBI index, % dominance, Simpson's index, and % Filterers were highest in impacted streams than in upland and lowland streams. Shannon's (H') diversity was similar in upland and lowland streams, and lowest in impacted streams.


The macroinvertebrate metric score displayed a positive regression against the habitat assessment score $(r^2=0.37)$ using all sites analyzed (Fig. 9). The average metric score was highest in upland streams (mean=23), and lowest in impacted streams (mean=13)(Fig. 10). Average macroinvertebrate metric scores were similar between ecoregions for each stream type. The regression of the macroinvertebrate metric score against the habitat assessment score for each ecoregion displayed almost identical relationships $(r^2=0.46 \text{ for NBR}, r^2=0.44 \text{ for SRP})$ (Fig. 11). Regression slopes were essentially the same (NBR, 0.14; SRP, 0.11).

Metric scores derived from qualitative samples were regressed against samples collected quantitatively from the same site. Similar metric scores were derived from either sampling method

Discriminant Root 1

Fig. 6. Discriminant scatterplot of habitat categories for Northern Basin and Range and Snake River Plain ecoregions. See appendix B for values of root scores and statistical summary.

Discriminant Root 1

Fig. 7. Discriminant scatterplot of macroinvertebrate metrics for the Northern Basin and Range and Snake River Plain ecoregions. See appendix C for values of root scores and statistical summary.

0.0

NO SR

UPLAND

ALL

NB SR

LOWLAND

NB SR

IMPACTED

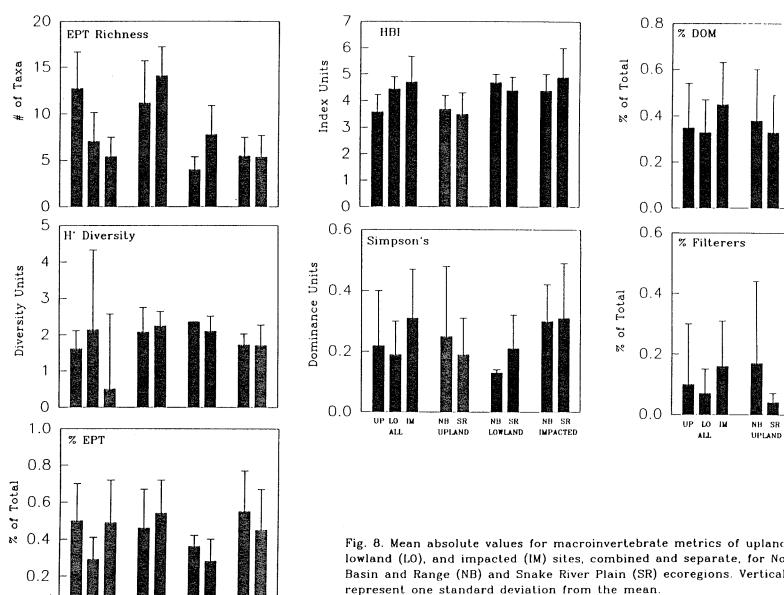


Fig. 8. Mean absolute values for macroinvertebrate metrics of upland (UP). lowland (LO), and impacted (IM) sites, combined and separate, for Northern Basin and Range (NB) and Snake River Plain (SR) ecoregions. Vertical bars

SR

LOWLAND

NB SR

IMPACTED

w

Village Same

Table 9. Absolute values and respective scores for macroinvertebrate metrics used for refined biotic index.

TYPE		REP #		EPT RICHNESS			SCORE	% DOM	SCORE	H' DIVERSITY	SCORE	SIMPSON'S INDEX	SCORE	FILTERERS SCO	RE % EPT	SCORE	SCORE MAX=35
	1254587003507800123	QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAN. QUAN. QUAN. QUAN.		7,00,000	DATA LANGE OF THE PARTY OF THE	90480-410000-14647-64900-1000-1000-1000-1000-1000-1000-1000-	500 mg - mg 5000 mm - 10000 mm	0267676767668477596	<u> </u>	7-157-15-15-15-15-15-15-15-15-15-15-15-15-15-		0.10 0.21 0.22 0.25 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27		0.16 0.97 0.07 0.11 0.01 0.03 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09	5 0.4	177-15/55/78/51-77-19-19	
	1567808457678	QUAL. QUAL. QUAL. QUAL. QUAN. QUAN.	- Character Caracter	10		4.13		0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	D4-040H7401-040-1-1	45/2476/2476/2476/2476/2476/2476/2476/2476	Part - 10801	0.11 0.12 0.13 0.13 0.23 0.23 0.13	いちらいいかっとう	0.06 0.04 0.24 0.04 0.04 0.05 0.03	555555		2130777515115111107 2130777515115111107
Immunding Immund	いたからいまするというというというというという	QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAL. QUAN. QUAN.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		1910/00/14 1810/00/14 1800/		000000000000000000000000000000000000000	P. M. P.	1.64 2.42 2.43 2.43 2.43 2.43 2.43 2.43 2.4	100000000000000000000000000000000000000	000000000000000000000000000000000000000		0.145 0.145 0.145 0.145 0.145 0.151 0.145 0.151 0.151 0.151 0.151 0.151		100 100 100 100 100 100 100 100 100 100	2151210011001101101101101101101101101101101
		SCORE		12.7-14.6 12.7-14.6 <12.6	6	3.59-3.90 >3.90	90	o.32-0.32 >0.38	58	2.26-2.45 <2.26-2.49	5	0.18-0.22 >0.22	2	0.06-0.08 >0.08-0.08	0.53-0 0.53-0		* ************************************
OPLA N=19	WU	MEAN STDER 95% C MEAN+	R L CL	16:8 14:8		0.3 3.3	1	0.5 0.0 0.3	}	8:6 9:1	3	0.10 0.04 0.25	3	8:85 8:88	8: 8:	64 88 81	

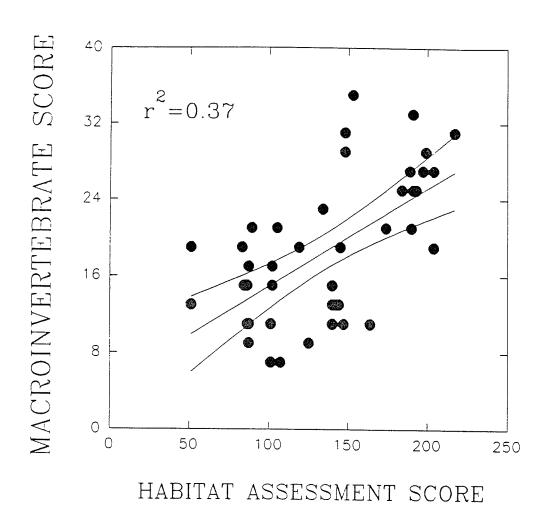


Fig. 9. Regression of the refined macro-invertebrate metric score (based on seven metrics) against the habitat assessment score. Regression line bounded by 95% CL.

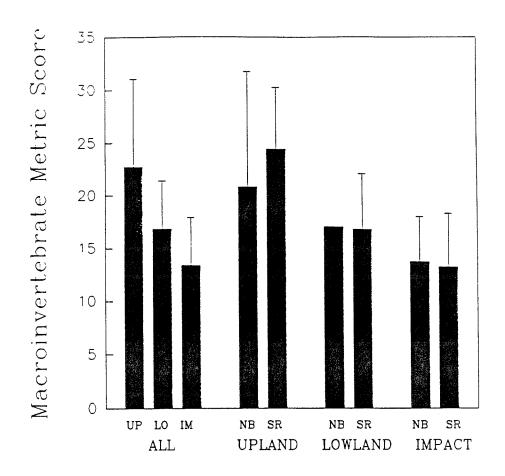


Fig. 10. Mean macroinvertebrate metric scores (separate and combined) of upland (UP), lowland (LO), and impacted (IM) sites for Northern Basin and Range (NB) and Snake River Plain (SR) ecoregions. Vertical bars represent one standard deviation from the mean.

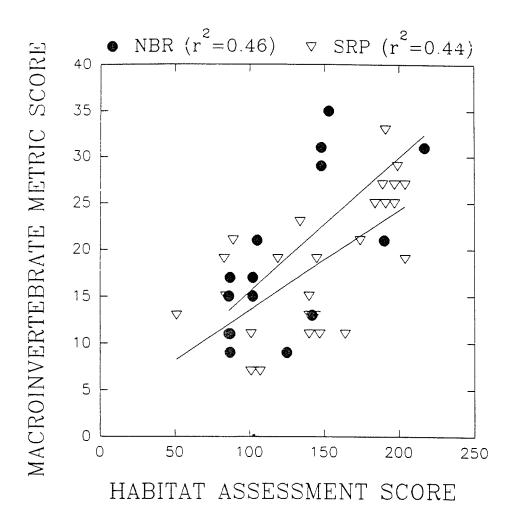


Fig. 11. Regression of the macroinvertebrate metric score against the habitat assessment score for the Northern Basin and Range (NBR), and Snake River, Plain (SRP) ecoregions.

 $(r^2=0.87)$ (Fig. 12), however macroinvertebrate density and biomass could not be determined from qualitative samples. These are two parameters of functional significance. Qualitative scores were somewhat lower than quantitative scores for upland sites, similar for lowland sites, and somewhat higher for impacted sites (Fig. 13). This resulted in greater separation among stream types using a quantitative sampling approach (mean score range=12-25) than with qualitative samples (mean score range=14-20). Further, the regression of the metric score derived from quantitative samples provided a better fit $(r^2=0.30)$ against the habitat assessment score than the metric score derived from qualitative samples $(r^2=0.19)$ (Fig. 14).

Macrinvertebrate Taxa Analysis: Multiple Discriminant Analysis (MDA) and Principal Components Analysis (PCA) were completed from 45 taxa that comprised at least 5% of the assemblage at a site (Table 10). Twelve taxa from this list were found important in distinguishing among stream types based on the MDA (Appendix D) and PCA results: Simulium, Baetis, Turbularians, Elmidae, Rhyacophila, Hydracarina, Ephemerella, Pisidium, Alloperla, Hexatoma, and Antocha (Fig. 15). However, some other taxa appeared to be more prevalent at upland sites, e.g., Rhithrogena, Zapada, Capnia, Micrasema, Rhyacophila acropedes, and Drunella doddsi. In contrast, odonate larvae and Sialis were more common in lowland and some impacted sites (Table 10).

The twelve taxa listed above were scored (as described in methods) based on 99% confidence limits on the mean absolute value for upland sites and summed (Table 11). The summed score averaged 32.5 for upland streams, 29.5 for lowland streams, and 27 for impacted streams. The summed scores were regressed against the refined habitat assessment scores and showed a positive relationship $(r^2=0.25)$ (Fig. 16). The results suggest much variation in the presence and absence of particular taxa within and among stream types. The taxa score was summed with

MACROINVERTEBRATE METRIC SCORE $r^2 = 0.87$ QUANTITATIVE SAMPLE QUALITATIVE SAMPLE

Fig. 12. Regression of macroinvertebrate metric score determined from qualitative sample versus score determined from quantitative samples. Regression line bounded by 95% CL.

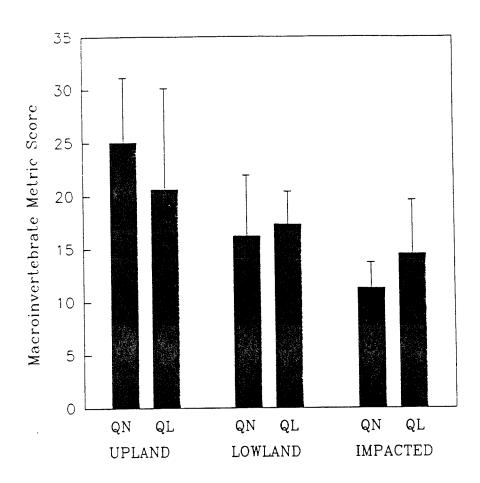


Fig. 13. Mean macroinvertebrate metric scores for both Quanitative (QN) and Qualitative (QL) measurements for each site type. Vertical bars represent one standard deviation from the mean.

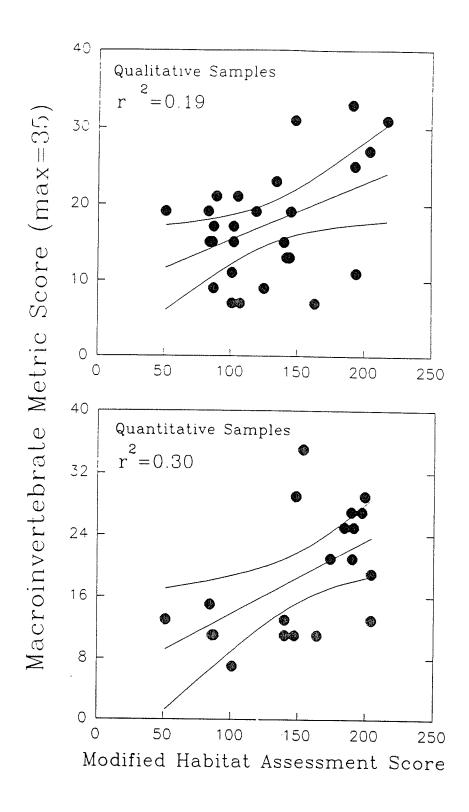


Fig. 14. Macroinvertebrate metric scores regressed against the modified habitat assessment score for qualitative and qualtitative samples from both ecoregions.

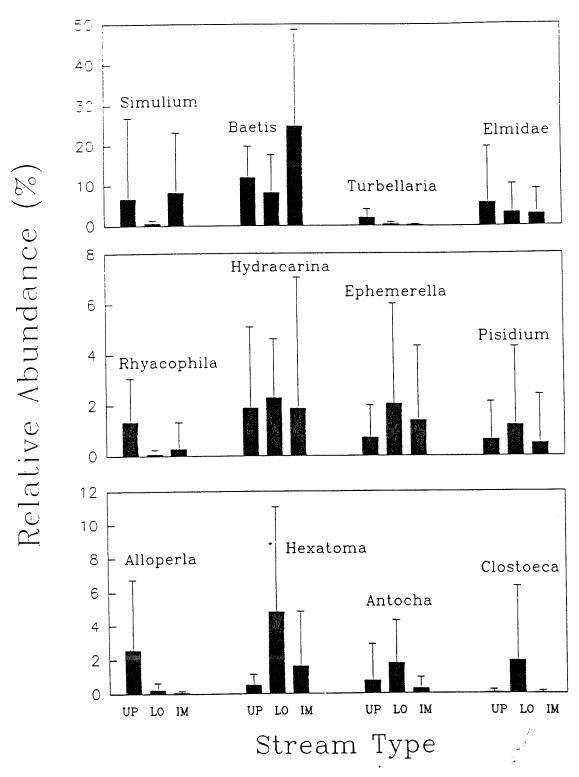


Fig. 15. Mean relative abundances of the twelve most common macroinvertebrates collected in upland (UP), lowland (LO), and impacted (IM) stream sites. Vertical bars represent one standard deviation from the mean.

Table 10. Macroinvertebrate taxa that comprised >5% of the assemblage for any one site. See Appendix F for taxa names for respective species notations.

TYPE	SITE	REP #	cinyg	simu	epeo	chir	baet	drco	turb	elmi	seti	drdo	rhac	cali	capn	micr	brac	olig	pael	rhit	hydra	glos	rhya	zapa	arct
1	1	QUAL.	20.00	13.90	11.86	8.47	7:46	6.78	4.75	4:41	3.05	2.03	2.03	1.69	1.36	1.02	0.32	1.02	1.02	1.02	1.02	1.02	0.68	0.34	0.34
	3	QUAL. QUAL. QUAL.	7.02	1.35 5.78 0.35	22:35	1.01 36.49	18.92 20.58 14.04		1.40	56.08 32.85 11.58		2.11		0.68		1:01 4:08 4:21	2.70 0.36 1.40	0.34			1:35 0:36		0.36		
]	37 39		2.09 6.25	8:43	37:95 37:38	17.22	13:38	7:11	1.26		0.42	8:84 2:84	6:69 1:47	1:10	0.42		0.37	2.56 3.35 4.04	0.42	0.74	0.84	4.03	8:33	9:70 14:23 0:37	
	40 35	QUAL. QUAL. QUAL. QUAL. QUAN.	14.23 8.68 25.79	2:38 8:83 8:83		23.33	}} :%	3:92	0.75 2.08 6.92		2:68	0.84 9.36 0.35	1:12	4.12	0.69	d:35		10.11	3:37	••••	9.37		4:12	7.49 3.47	1.04
	36 38	QUAN. QUAN. QUAN.	13:33	0.91	3:33	3.37 6.37	18.55 11.11	6.69	0.75 0.75 0.34 0.34 0.34 0.40		0.61 0.42	3.34 1.25 0.60	1:22 4:25 4:20		12:42	0.83	2.13	3.65 13.21		0.83	0.91 2.58		1.82 9.42 4.30	1:52 5:83 1:80	
	30 31	QUAN. QUAN.	13:63		3.80 3.02	27:35 17:35	3:23	3.26 0.33	9:63 2:37 8:67 0:88		3.80	0.36 0.63 8.03 2.75	0.95 0.39	0.32	2.01		0.32	71.01 16.14 25.42	1:58 1:18	0.36 3.34 2.75	0.72 1.27 3.01	0.32	0.36 0.95 5.35		0.36
ļ	25 15	QUAN. QUAN. QUAL.	16.89	1.01	3:85 1:15	31:76	14:18	0.33 1:18 0:34	8:86	24.43	8.45	2,75	0.39	1.91	2.01 1.18 0.34	0.34		48:41 3:44	1:18	2.75	2.36	8.02	3:37	5.06 5.02 1.57 2.70 9.54	
Ş	18	QUAL. QUAL. QUAL. QUAL. QUAL. QUAN.	0.31	9.62 2.53 2.56	8:33	28.36 16.37	20:39 28:53		0.58	8.96 1.60			0.62	1.24			1.38 14.74 1.60	3:45 3:42 9:62			3:45 2:31	8.02 0.34 4.66		12.73	
5	48	QUAL.	2.88	2.50	n 78	35:36 35:28	28.33 9.49 17.25	0.32	1:39	1.00				3.51 4.61 1.95	0.54			12:84		1.36	3:56	7.00			
3	76 27	QUAN. QUAN. QUAN.		0.35	3:52 4.42	22:18 98:57	17:25	0.37	0.37		0.35			3.54			5:38	8.85 11.80			6.69	3.89	2.82		
333	26 27 28	QUAL. QUAL. QUAL.		47.72 1.54	1.05	27:72 20:28 32:31	5.26 2.10 6.15			23.08				3.34			3.85	1.05			0.70 0.35	2.10	6.92		
3	20 30 31	QUAL. QUAL. QUAL.	1.81	1.44	0.36	13:32	14.73 28.16		0.72	2.05 15.88							21.66	5.53 1.08			4.62 0.32 22.74	0.50	0.72	0.34 1.81	12.67
3	32 50	QUAL.	6:27 6:55 9:67 5:23	2:32 1:37	1.06 3.01	7.62	12.01 21.53		0.35 0.27	15.88 7.42	0.82		4.64					4.95 3.01 14.67			2.12 0.55				
3	31 53	QUAL. QUAL. QUAL. QUAN.	5:23 4.60	6:85 45:83	0.27	3:77	\$4:50 \$3:57										2.00	14.67	2.55		0.55 8.33 8.82	0.32	0.31	5.41	
3	5 0	QUAN.	6.60	0.82 7.53	0.23	22.79 14.76	68.65 Q.36	0.75	0.40		1.57		0.31				4.08 0.56 0.35	40.23 0.31 27.88			0.63		0.63		
3	33 54	QUAN. QUAN. QUAN.	0.00	20:33 0:20		2.87	74:60 0:10	0.35	0.09								1.95	27.86 2.08 3.88	0.83		8:35 8:28	0.83		8.03	
uplan	d	mean std	8:48	28: 3 8	9:83	11:57	11.81	3:72	1.99	12:62	1:83	1.82	1-33	9.₹8	1:83	9:83 1:53	8.45	11.38	1:38	8-42	1-89	8-28	1-62	2.83	8-27
lowla	nd	mean std	0.32	0.48	1:25	28.30 16.82	8:13	0.06	0.26	3-18 7-18	0.03	0.00	0.06	1.52	0.05	0.00	2.52	5.26	0.00	8-18	2.29	1.54	0.26	2.02	0.00
impaci	ted	mean std		15:12	0:56 2:58	14:83	24.88 23.81	8:82	8:11	2:81 8:27	8:48	8:88	9:27	8:88	8:88	8:88		18:23	8:18	8:88	1.87	8:20	9:44	0.87	9.70

Table 10. (cont.)

TYPE	SITE	REP 4	hete	amel	hydro	ephe	pisi	gren	allo	hexa	para	cera	hyal	tric	amph	anto	hdrop	ostr	clos	opti	sial	ptca	ophi	font
1	123	QUAL. QUAL. QUAL. QUAL.	0.34	0.34	0.72	2:85	8:38	1.01	0.32				9: 3 8			0.68		2.03				1.35		
	37 37 37	QUAL. QUAL. QUAL. QUAL. QUAL. QUAL.	44:69 6:32	0.42	12:33	4.21 1.10	5.86	1.40	0.35 17.28 2.78	1-19	0.37 4.18	0.37		0.73		2.93 0.42			0.84	0.84		2.56 0.42		
4	247978780C	QUAL. QUAN. QUAN. QUAN. QUAN. QUAN.	20.08 15.72 28.33 28.33 0.30	0.69 1:25 0.95	1.52	2.08	3.75		2.78 9.83 3.30 3.81	1.107 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	/ II/	2.90	0.36	0.36	8:83	8:43				5.00				
Arrana I	777357678	QUAN. QUAN. QUAL. QUAL. QUAL. QUAL.	0.33 1.57 2.36	8:33 1.01	3.05 1.38 1.24	8:33 8:78	0.34	9: 1 8	1.24	0.68 2.07		0.34	18.50 5.77	1:33		9:32 8:58	0.38 2.17	3.44 6.36 10.26		21.38 12.42	0.38 2.49 0.93		3.79	
	198 253 254 275	QUAL. QUAN. QUAN. QUAN. QUAN.	43.36 43.36	0.96 2:86 2:85	3.52 0.35	1.95	10.90		0.96	6-36 18-86 15-86 0-86	1.28 1.36 3.50 0.35 4.42	0.64 0.35 0.26 2.46		22.36		7.59 2.46		10.26	15.34	13.03	1.60 13.28		0.27	
Lanenenen	\$07.800 \$07.800	QUAN. QUAL. QUAL. QUAL. QUAL.	8.85 1.75	2.95	20:35 20:35 20:15	6.15				1.75		0.77		8:39 3.77	1.05	1.40	2.11 4.45 23.10	11.55		12.24		4 F.O.	1:95 0.34 10.11	
ماستعمتمتان	31 20 50 50 50 50 50 50 50 50 50 50 50 50 50	QUAL. QUAL. QUAL. QUAL. QUAL. QUAL.	4.92	0.33	8.20	11.66	8.48			5.46 0.33 12.62	0.66	0.62	8:13 0.67	9:36 3:18 47.00	j.	2.46	0.92	0.71	0.55			0.66	1.23	
KANBUBURURURU	54555555	QUAL. QUAN. QUAN. QUAN. QUAN. QUAN.	4.83 0.31 1.39	0.32	8 44	2.78	0.31		0.32 8:35 8:28	2.82 5.90 0.28		0.28	0.20	30.36		1.39		3.34		1.54 18.23 0.28 8.31 0.10		0.32	è	89.75
uplan	nd	mean std	17:71	8:36	3:18	9:23	9:63	8:33	2:55	8:52	9:38	8:18	8:18	8:98	9:55	8:7 3	8:88	8:23	8:93	P:31	8:88	8:83	8:88	8:88
lowls	ind	mean std	5.90 12.28	0:62 1:11	1:38	3:87	3:83	0.99 2.63	8:23	4:82 8:25	1:23	0.55 1.24	3:21	3.58 6.57	0.00	1:77	0.23 0.62	1:82 3:31	1:23	4:26 4:27	1:80 3:71	0.00	0.37 1.09	0.00
impac	ted	mean std	9:33	₹: 3 7	3:13 5:51	2:33	9:32	8:88	8:93	3:23	3:39	8:23 8:58	8:38	12:33	8:24	8:38	1:70 5:31	0: 93 2:78	8:03 8:13	3:47	8:15	9:48	0:80 2:31	20:56

Table 11. Absolute values and respective scores for important macroinvertebrate taxa for metric refinement. Species names associated with respective notations found in Appendix F.

TYPE SI	TE REP #	simu	SCR baet	SCR turb	SCR elmi	SCR rhac	SCR hydra	SCR ephe	SCR pisi	SCR allo	SCR hexa	SCR anto	SCR SCORE
	1 QUAL. 2 QUAL. 3 QUAL. 4 QUAL. 5 QUAL.	8:38	7:46 18:62 18:58	\$ 4.75 \$ 1.40	56.08 32.85 11.58	2.03	5 1.02 1.35 0.36	2:86 4:21	5 0.68 0.36 1.40 5.86	5 0.32 5 0.35	1	\$ 5 0.68	30 257
	37 QUAL. 37 QUAL. 39 QUAL. 40 QUAL. 43 QUAL.		5 13 38 5 11 88	\$ 1.26		6.69	0.84 3 0.37	1.10	\$ 5.86 1 5	5 17.28 5 4.48 5 2.78	1 5 1:19	\$ 8:43	\$ 31 33 1 25 1 33
	43 QUAL. 35 QUAN. 36 QUAN. 37 QUAN. 38 QUAN.	2.78 8.83 8.91	5 27.08 5 18.54 5 11.11	75875	SECOND SE	6.69 1.47 1.39 0.632 1.44 4.20	0.377 7.261 0.581 1.072 14.072 15.51	\$ 2.08 1 5	§ 3.75	ξ	5 1.10 5 1.37 1.37 1.37 1.30 1.30	\$ 0.63 \$ 9.42	1 33 3 37 27
	30 QUAN. 40 QUAN. 41 QUAN. 42 QUAN. 43 QUAN.	1.01	900080-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	5 0.63 5 2.34 5 0.68	. 5	0.95	1	\$ 8: 3 8	ערייטייט	1 0.83 3.36 3.68 3.68 3.68 3.68 3.68 3.68 3	3 0.60 3 0.36 5 0.95 1 2.01 3 0.68	£5	355
2	15 QUAL. 16 QUAL. 17 QUAL. 18 QUAL. 48 QUAL. 44 QUAN.	0.62	20.69 20.19 23.57 28.53	5 0.58	8.96	0.62	2.555 2.555 2.555 2.56	3 1 11.85 2 8.85	5 0.34 5 0.62 1 10.90	3 1.24 1 0.39 1 0.96	2.07	\$ 9: 11 \$ 8:58	
ALCONOLUL I	45 QUAN. 46 QUAN. 47 QUAN.	0.35	\$ 2:49 \$ 17:25	} 1:39			6.69	1.95	J	UNUNUNU	6.97 7.37 1.320 18.285 10.59	7.59	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ELECTRONICAL	37 QUAL-	47.72 1.54	2000/2000/2000/2000/2000/2000/2000/200	J-5-15-15-15-15-15-15-15-15-15-15-15-15-1	23.08 2.05 15.88 7.42	5	0.59 0.70 0.35 4.62 0.34	5 6.15	75757	JUNGANIGA	1.75	1 1.40	27 27 35 20
Jenengen	20 QUAL. 31 QUAL. 32 QUAL. 35 QUAL. 50 QUAL. 51 QUAL. 52 QUAL. 53 QUAL.	1.44		3 0.35 0.27	7:42	4.64	2.12 0.55 0.33 0.62	\$ 11.66	1 8.48 5	71555	5.46 0.33 12.62	1 2.46	1 27 1 31 1 31
Keleber	SY GUAN:	45.25 45.25 7.35 7.35 7.35	51255 6475 6215 62176 62	1 2 (0		0.31	0.63	1.85	-5555	5 0.32	2.82	5	23
3	52 QUAN. 53 QUAN. 54 QUAN.	29:32	3 21:68	j 0.69	1		8:38	2.78	5 0.31	§ 8:35	5:28	1 1.39 5	3 31
upland	mean 99CL	8.321	11.291	1:89	5.758	0.783	1:89	0.527	0,63	1.716	0.50 0.263	0.878	
SCORE	\$	<6 6-15 >15	<12 12-15 >15	>3 <2-3	>11 -8-11 -8-11	>2 <1-2	>2 <1-2	<.5 >1 ⁵⁻¹	<.5 >1	245-4 <2.5	<.5 >1 ⁵⁻¹	>1.5 .7-1.5 <.7	

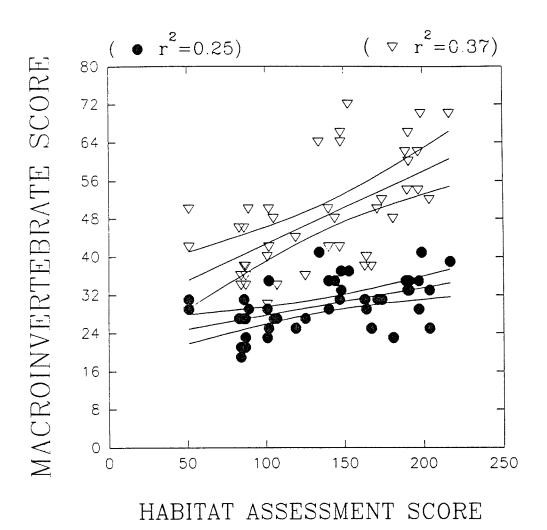


Fig. 16. Regression of the macroinvertebrate species score (●) and the combined species and refined metric score (▽) against the refined habitat assessment score. Regression lines bounded by 95% CL.

the refined macroinvertebrate metric score and regressed against the habitat assessment score. This relationship also was found to be positive $(r^2=0.37)$; this value was identical to the regression coefficient of the refined metric score and habitat score. These data suggest further refinement is necessary for taxa level metric development.

Fish Metric Development: Table 8 provides the raw data for fish species collected from each site, and designations of fish taxa for tolerance, trophic guild, and whether native or introduced (Chandler and Maret 1991). Evident from this table is the shift from a relatively intolerant Salmonidae-based system in upland streams to a tolerant non-Salmonidae based system in impacted streams. This data is summarized in Table 8 for the 20 individual metrics. Principal Components Analysis and Multiple Discriminant Analysis agreed closely with important fish metrics to distinguish among stream types and ecoregions. Six of the original 20 metrics were found important: Number of Salmonidae Taxa, Number of Tolerant Taxa, % Salmonidae, Salmonidae Biomass, Tolerant Density, and Salmonidae Condition Factor (Table 12). A score of five indicated optimal conditions for a particular metric, with a maximum summed fish metric score equal to 30.

Salmonidae were predominant in upland sites, whereas tolerant taxa were predominant in impacted streams (Fig. 17). Salmonidae species richness, % Salmonidae, Salmonidae standing crops, and the condition factor of Salmonidae were highest in upland streams, followed by lowland, and then impacted sites. In contrast, the number of tolerant taxa and density of tolerant fish were highest in lowland and impacted streams than in upland streams (Fig. 17). Salmonidae species richness, % Salmonidae, Salmonidae biomass, and Salmonidae condition also appeared to be greater in the Northern Basin and Range ecoregion than in the Snake River Plain ecoregion. In addition, the number of tolerant taxa and tolerant fish density appeared greater in the Snake

Table 12. Metrics and corresponding scores derived from fish collections in the Snake River Plain and Northern Basin and Range Ecoregions.

		NUMBER		NUMBER TOLERANT		% SALMON		SALMON BIOM		TOLERAN		CONDIT	ION	TOTAL SCORE
STREAM	TYPE	SALMON SPECIES	sc	SPECIES	sc	SALMON	s c	BIOH	s c	DEMOTI	sc	PACION	s c	MAX=30
Green	Up	2	5	0	5	1	5	1.93	5	0	5	1.08	5	30
Stinson	Up	1	5	0	5	1	5	8.54	5	0	5	1.07	5	30
Trapper (upper)	Up	1	5	0	5	0.5	3	1.07	1	0	5	1	5	24
Buck	Up	1	5	0	5	1	5	1.67	1	0	5	0.88	5	26
Cottonwood	Up	3	5	0	5	0.75	5	2.66	5	0	5	0.97	5	30
3rd Fork	Up	1	5	0	5	1	5	7.02	5	0	5	0.97	5	30
Bloomington	Up	1	5	0	5	1	5	0.18	1	0	5	1.36	5	26
Mink (Preston)	Up	1	5	0	5	1	5	5.69	5	0	5	1.16	5	30
WF Mink (Poc.)	Up	1	5	0	5	1	5	1.95	5	0	5	1.06	5	30
Timber	Up	1	5	0	5	1	5	3.85	5	0	5	1.13	5	30
SF Soldier	Up	1	5	0	5	0.5	3		1	0	5	1.32	5	24
Cherry	Up	0	1	0	5	0	1	0	1	0	5	NA	1	14
Bear	Up	1	5	0	5	-	5	0.82	1	0	5	1.07	5	20
Ramey	Up	1	5	_	5		5		1	0	5	1.29	5	20
Coyote	Up	1	5	0	5	0.5	3	0.07	1	0	5	1.12	5	24
Rock (Twin S-8)	Up	2	5	1	1	0.66	5	1.04	1	0.023	5	0.874	5	2
.ittle Jack's	Lo	1	5	0	5	0.5	3	0.66	1	0	5	0.73	1	2
Big Jack's (upper)	Lo	1	5	3	1	0.25	1	0.37	1	0.993	1	0.86	5	14
Cottonwood	Lo	1	5	0	5	1	5	4.75	5	0	5	0.86	5	3
Lake Fork	Lo	1	5	1	1	0.33	1	0.46	1	0.076	5	0.85	5	1:
Station Fork	Lo	2	5	0	5	0.5	3	2.32	5	0	5	0.95	5	2
Big Willow	Lo	1	5	3	1	0.25	1	2.54	5	0.148	1	1.02	5	1
Cold Springs	Lo	1	5	1	1	0.5	3	2.96	5	0.033	5	0.92	5	2
Current	Up	0	1	1	1	0	1	0	1	0.006	5	NA	1	1
Duncan (upper)	Lo	1	5	0	5	1	5	8.57	5	0	5	1.29	5	3
Spring	Lo	1	5	. 3	1	0.25	1	2.67	5	2.186	1	1.07	5	1
Sheep	1 m	0	1	2	1	0	1	0	1	0.192	1	NA	1	
Big Jack's (lower)	I m	1	5	3	1	0.25	1	1.06	1	0.269	1	0.78	3	1
Cassia	I m	1	5	2	1	0.25	1	0.72	1	0	5	1.02	5	1
Mary's	I m	0	1	2	1	0	1	0	1	0.118	3	NA.	1	
Duncan (lower)	Im	1	5	0	5	1	-5	5.05	5	0	5	0.81	3	2
Trapper (lower)	I m	1	5	1	1	0.5	3	1.98	. 5	0.02	5	1.05	5	2
Shoshone	Im	0	1	5	1	0	1	.0	1	0.273	1	NA	1	
SF Mink (Poc.)	Im	0	1	. 0	5	0	1	0	1	0	5	NA	1	_ / 1
Wolverine	Im	1	5	0	5		5		5		5			al.
Camas	Im	0	1	3	1	0	1	0	: 1	0.098	5	NA.	1	ے 1
Deep	Im	1	5	5 3	1	0.2	1	0.05	1	0.276	1			1
Rock (Magic)	1 m	1	5	5 0		0.5	3	0.05	- 1	0	5	0.81	3	2
Rock (Twin S-5)	Im	0	1	3	•	1 0	1	۰ ا	1	0.058	5	0.959	5	1
Rock (Twin S-6)	Im	1	:	5 1	•	0.5	3	3 0.08	1	0.012		1.06	5	2
	SCO	RE									5		-	
G000	5	>.92		<. 8 6		>.54		>1.88		<.110		>.84		
FAIR	3	>.83		>.86		>.49		>1.71		>.110		>.76		
POOR	1	<.83		>.94		<.49		<1.71		>.121	1	<.76	,	

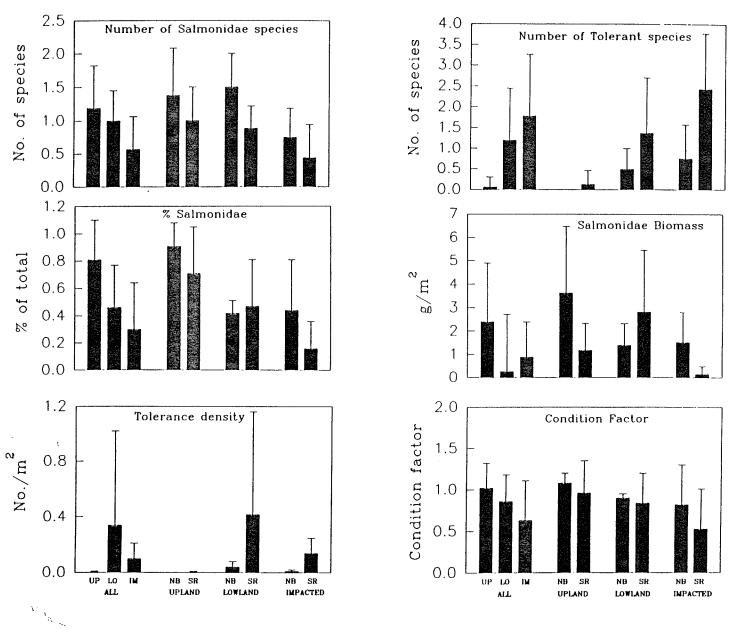


Fig. 17. Mean absolute values of fish metric scores for upland (UP), lowland (LO), and impacted (IM) sites combined and separate for Northern Basin and Range (NB) and Snake River Plain (SR) ecoregions (vertical bars = one standard deviation from mean).

River Plain ecoregion than in the Northern Basin and Range ecoregion (Fig. 17). These data suggest that streams in the Snake River Plain were more heavily impacted than streams in the Northern Basin and Range.

The fish metric score averaged 26.4 for upland, 21.0 for lowland, and 16.1 for impacted streams (Figure 18). Fish metric scores were comparable between the two ecoregions, although impacted streams of the SRP had lower values (mean=11.1) than impacted streams of the NBR (mean=18.7). The fish metric score showed a significant positive regression against the habitat assessment score $(r^2=0.53)$ (Figure 19). Significant positive relationships were displayed when metric scores of both ecoregions were regressed independently against the habitat assessment score (NBR, $r^2=0.66$; SRP, $r^2=0.61$) (Figure 20). Further, both regression lines exhibited identical slopes, but the intercept for the SRP relationship was less than that for the This suggests that habitat quality is somwhat lower in the SRP than in the NBR, as was shown in average fish metric scores being lower in SRP impacted sites relative to NBR impacted sites (see Figure 18).

We regressed the number of fish captured using one-pass of the electrofisher against the estimated abundance based on three passes of the electrofisher. We found a positive relationship $(r^2=0.66)$, although much variation was observed at higher fish densities (Fig. 21). These data suggest that three passes of the electrofisher should be completed in streams displaying higher fish densities. Apparently, low capture effectiveness occurs in streams with higher fish densities.

Fig. 18. Fish metric scores for upland (UP), lowland (LO), and impacted (IM) sites combined and separate for both Northern Basin and Range (NR) and Snake River Plain (SR) ecoregions. Vertical bars represent one standard deviation from the mean.

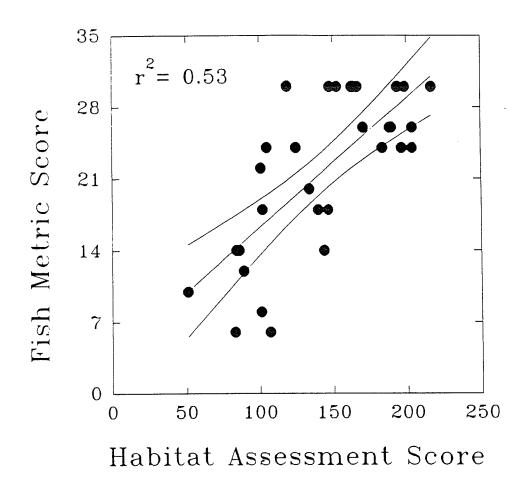


Fig. 19. Fish metric score regressed against the habitat assessment score. Outer diagonal lines represent 95% confidence limits.

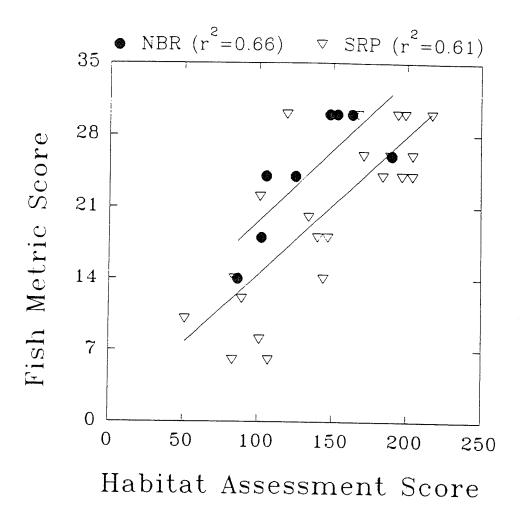


Fig. 20. Regression of Fish Metric Score on Habitat Assessment Score for Northern Basin and Range (NBR) and the Snake River Plain (SRP) ecoregions.

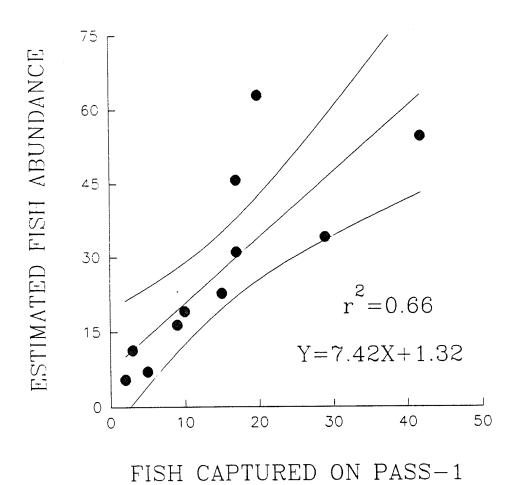


Fig. 21. Number of fish collected on the first electroshocking pass regressed on estimated fish abundance.

DISCUSSION

The primary goal of the project was to refine and test a series of biotic metrics for assessing biological integrity to eventually develop biological criteria for demonstrating recovery or degree of impact for freshwater ecosystems. The present study provided baseline monitoring data for macroinvertebrates and fish from a spectrum of "least" impacted or disturbed streams (i.e., upland and lowland stream types) in the two ecoregions. of rapid bioassessment protocols allowed for the efficient and effective collection of this reference data set. A standardized methodology proved effective for comparing and combining data from the previous year of study. For macroinvertebrates, we found a quantitative sample (modified Hess sampler, $250-\mu m$ mesh) to be as fast and provide additional information (e.g., organism density and biomass) and better resolution among stream types than a qualitative kick sample. The quantitative sampler also allowed for better sampling of specific habitat types. For fish, we found that a single pass of the electrofisher was effective in streams with low turbidity and low fish densities, but that a three-pass approach was needed when streams were turbid and/or had high fish densities. Blocknets were used with both the single-pass or three-pass approaches. The collection of baseline data from reference or "best case" streams should allow for the development of biological criteria for these two ecoregions for use by resource managers. However, additional samples providing a balanced sample size among stream types and ecoregions would greatly add to a robust analysis of the data. For example, Ohio EPA suggests a sample size of at least 40 streams per ecoregion (EPA 1990). Following their protocols, more samples are needed especially from the Nothern Basin and Range ecoregion and, in particular, for lowland type streams (currently n=2).

We found the addition of some quantitative variables for assessing aquatic habitats to be important or useful in

distinguishing between ecoregions and among stream types. Based on results from Multiple Discriminant Analysis and Principal Components Analysis, measures of maximum water temperature, specific conductance, and nitrate and ortho-phosphate levels provided important additional information on differences in habitat conditions between ecoregions. Further, the inclusion of the measures suggested that aquatic habitats may be degraded more in the Snake River Plain than in the Northern Basin and Range ecoregion. However, it should be noted that only two lowland streams were sampled in the Northern Basin and Range. addition to the above chemical measures, quantitative measures for specific physical parameters such as embeddedness, substrate size, width/depth ratio, and % canopy cover proved useful. example, although sediment levels tended to be higher in lowland and impacted streams than in upland streams, nutrient levels were greatest in impacted sites. We suggest a compromise between the current qualitative approach and the addition of more quantitative measures. Little additional time was required for the collection and recording of these important habitat measures.

Seven macroinvertebrate metrics (EPT richness, H' diversity, %EPT, HBI, Simpson's Index, % dominance, and % Filterers) were found important for distinguishing among stream types for the two ecoregions. Shannon's H', the %EPT, Simpson's Index, and % Filterers were metrics not included in the list of macroinvertebrate metrics presented by Plafkin et al. (1989). The inclusion of these refined metrics provided a relatively good fit against the habitat assessment score. In addition, these metrics were found useful for both ecoregions with similar mean scores observed for the different stream types analyzed; thus demonstrating the utility of the ecological assessment approach. These findings suggest the necessity of refining biological metrics for specific regions of the country to take into account the natural regional variation observed for lotic systems (Hughes et al. 1990). We recommend that additional ecoregions within

Idaho, e.g., western forested mountains ecoregion, be included in future studies for analysis of among ecoregion variability.

We attempted further refinement of the macroinvertebrate metric by including measures from specific taxa. The results indicated some taxa to be specific by stream type, with twelve taxa determined important based on MDA and PCA. In addition, some taxa were present only in upland streams (e.g., Rhithrogena), whereas other taxa were found primarily in lowland and impacted sites (e.g., Sialis and Odonate larvae). However, the high variation in the presence and absence of specific taxa within and among stream types made scoring difficult, consequently little improvement was observed when the data were regressed against the habitat assessment score. These data suggest that further refinement of metrics based on specific taxa is necessary.

Six metrics for fish were found important for distinguishing among-stream types between the two ecoregions. These metrics focused primarily on the Salmonidae assemblage or degree of tolerant taxa in the fish assemblage. The metric score provided a good fit against the habitat assessment score. The metric score also suggested that habitats in the Snake River Plain ecoregion are more impacted than in the Northern Basin and Range ecoregion. However, the metrics were useful indicators of biological integrity for both ecoregions.

In summary, we found that refinement of the original biotic metrics (Plafkin et al. 1989) could account for regional differences in biotic assemblages necessary in the development of biological criteria for Idaho streams; for example, refining the fish metrics towards a predominantly Salmonidae assemblage. These refined biotic metrics (macroinvertebrates and fish) were sensitive to changes in aquatic habitat quality based on the modified habitat assessment evaluation. Habitat assessment was

improved through inclusion of quantitative measures and little additional time was involved. A standardized methodology, using both qualitative and quantitative measures, is important for future refinement of habitat assessment procedures and biotic metrics. We found the present habitat assessment procedure to be biased towards detecting habitat quality for fish and inclusion of quantitative habitat measures increased the sensitivity of the habitat assessment for macroinvertebrates. The data suggest the current refined biotic metrics are suitable for monitoring biological integrity for streams in the Northern Basin and Range and Snake River Plain ecoregions. Analyses of additional ecoregions is needed before a uniform procedure for the entire state of Idaho is derived. Further, our data indicate subtle differences in habitat quality among ecoregions, implying the importance of using regional reference streams in the application of the rapid bioassessment procedure.

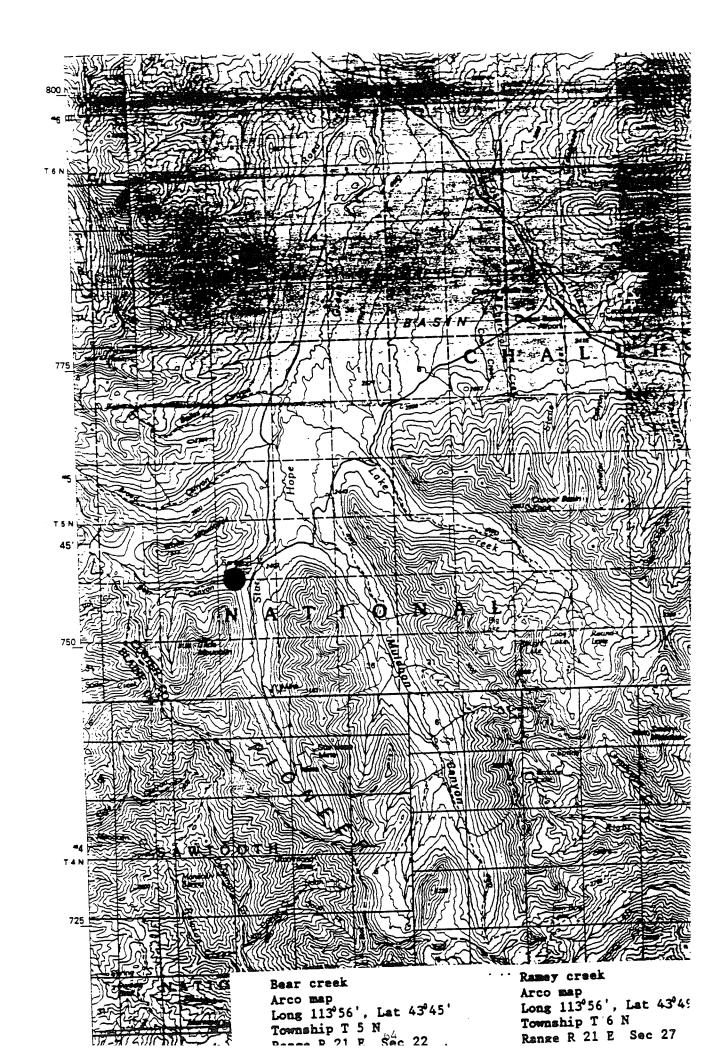
ACKNOWLEDGMENTS

A number of individuals assisted in the conduction of this project during the past two years. Donna Anderson, Jim Check, Paul Dey, Pete Koetsier, Deron Lawrence, Janet Mihuc, Tim Mihuc, Susannah Minshall, Greg Mladenka, and Dave Moser assisted in the field. Laboratory assistance was provided by Jim Check, Robert Gill, Justin Mann, Tim Mihuc, Dave Moser, Cecily Nelson, Mark Overfield, and Kelly Sant. Tracy Hillman, Pete Koetsier, and Scott Spalding verified fish identifications in the laboratory. We thank Kirk Koch, Steve Langenstein, Mike McIntyre, Mike Ingham, Pat Olmstead, Chip Corsey, Scott Grunder, and Al Van Vooren for information on prospective field sites. Special thanks go to Bill Clark, Tim Litke, Terry Maret, Mike McMasters, and Mike McIntyre of Idaho Department of Health and Welfare, Division of Environmental Quality for advice and assistance throughout the project.

LITERATURE CITED

- APHA. 1989. Standard methods for the examination of water and wastewater. Washington D.C.
- Barbour, M. T., and J. B. Stribling. In press. Habitat assessment approach for evaluating biological integrity of stream communities.
- Burton, T. A. 1991. Monitoring stream substrate stability, pool volumes, and habitat diversity. Water Quality Monitoring Protocols-Report 3. Idaho Department of Health and Welfare, Division of Environmental Quality, Boise, Idaho. 8p.
- Burton, T. A., E. Cowley, G. W. Harvey, and B. Wicherski. 1991.

 Protocols for evaluation and monitoring of stream/riparian habitats associated with aquatic communities in rangeland streams. Water Quality Monitoring Protocols-Report 4. Idaho Department of Health and Welfare, Division of Environmental Quality, Boise, Idaho. 31p.
- Chandler, G. L., and T. R. Maret. 1991. Protocols for assessment of biotic integrity (fish) in Idaho streams. Water Quality Monitoring Protocols-Report 6. Idaho Division of Health and Welfare, Division of Environmental Quality, Boise, Idaho. 25p.
- Clark, W. H. 1990. Coordinated nonpoint source water quality monitoring program for Idaho. Idaho Department of Health and Welfare, Division of Environmental Quality, Boise, Idaho. 139p.
- Clark, W. H., and T. R. Maret. 1991. Protocols for assessment of biotic integrity (macroinvertebrates) in Idaho streams. Water Quality Monitoring Protocols-Report 5. Idaho Department of Health and Welfare, Division of Environmental Quality, Boise,


Idaho. 18p.

- Dunn, A. K. 1990. Water quality advisory working committee: designated stream segments of concern. Idaho Department of Health and Welfare, Division of Environmental Quality, Boise, Idaho. 52p.
- Environmental Protection Service. 1990. Water quality program highlights: Ohio EPA's use of biological survey information. USEPA, Office of Water, Washington D.C. 4p.
- Fausch, K. D., J. R. Karr, and P. R. Yant. 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans. Am. Fish. Soc. 113:39-55.
- Fisher, T. R. 1989. Application and testing of biotic integrity in northern and central Idaho headwater streams. M.Sc. Thesis, University of Idaho, Moscow, Idaho. 180p.
- Gallant, A. L., T. R. Whittier, D. P. Larsen, J. M. Omernik, and R. B. Hughes. 1989. Regionalization as a tool for managing environmental resources. EPA/600/3-89/060.
- Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family level biotic index. J. N. Am. Benthol. Soc. 7:65-68.
- Hughes, R. M., T. R. Whittier, C. M. Rohm, and D. P. Larsen. 1990.
 A regional framework for establishing recovery criteria.
 Environmental Management 14:673-683.
- Karr, J. R. 1991. Biological integrity: a long neglected aspect of water resource management. Ecological Applications 1:66-84.
- Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J.

- Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Special Publication 5. Illinois Natural History Survey.
- Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. USEPA EPA/444/4-89-001.
- Platts, W. S., W. F. Megahan, and G. W. Minshall. 1983. Methods for evaluating stream, riparian, and biotic conditions. Gen Tech. Rep. INT-138. Ogden, Utah. USDA, Forest Service, Intermountain Forest and Range Experiment Station. 70p.
- Robinson, C. T., and G. W. Minshall. 1986. Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season. J. N. Am. Benthol. Soc. 5:237-248.
- Robinson, C. T., and G. W. Minshall. 1991. Biological metric development for the assessment of nonpoint pollution in the Snake River ecoregion of Southern Idaho. Final Report submitted to Idaho Division of Environmental Quality. 75p.
- Statsoft: Statistica. 1991. Complete statistical system with data base management and graphics. Statsoft, Inc., Tulsa, Ok.
- Strahler, A. N. 1957. Quantitative analysis of watershed geomorphology. Am. Geophys. Union Trans. 38:913-920.
- Waters, T. F., and R. J. Knapp. 1961. An improved bottom sampler.
 Trans. Am. Fish. Soc. 90:225-226.
- Winget, R. N., and F. A. Magnum. 1979. Biotic condition index: integrated biological, physical, and chemical stream parameters for management. <u>In</u> Aquatic ecosystem inventory:

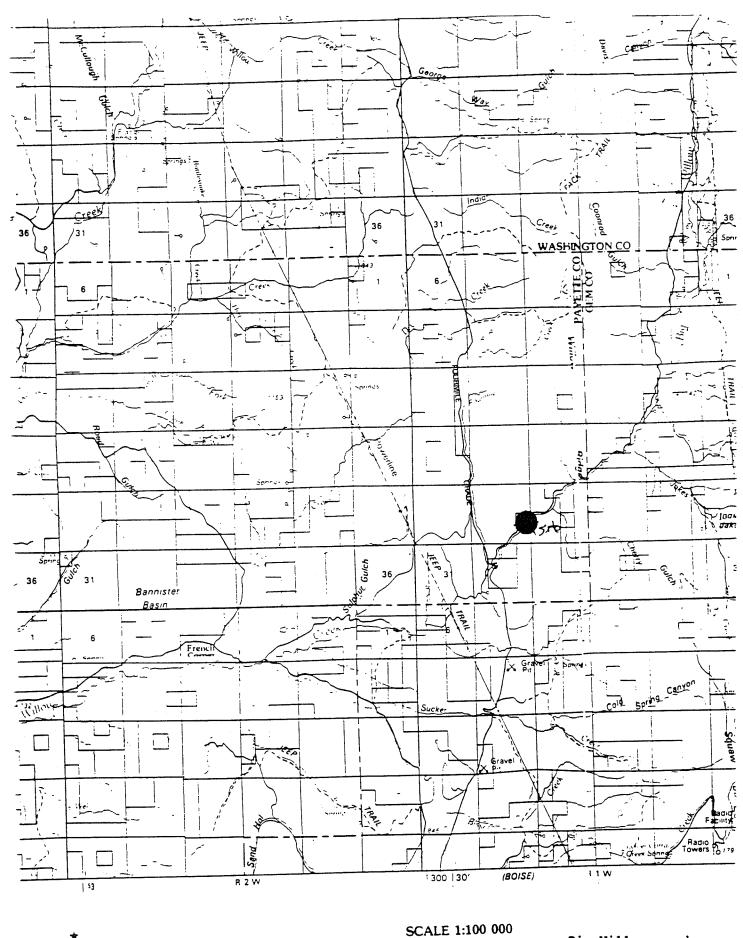
Macroinvertebrate analysis. U. S. Forest Service Intermountain Region Contract No. 40-84-M8-8-524. Brigham Young University, Provo, Utah.

- Wisseman, R. W. 1990. Freshwater macroinvertebrates species list including tolerance values and functional feeding group designations for use in rapid bioassessment protocols. Report No. 11075.05 USEPA, Assessment and Watershed Protection Division, Washington D. C.
- Zar, J. H. 1984. Biostatistical Anlysis, 2nd edition. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

T 10 S 4710000m N 42° 30' R 3 E Printed 1978 **≟**00 116°00' /- UN 22---ROAD CLASSIFICATION Primry highway, hard surface Seconary highway, hard surface Light-ty road, hard or improved surface. . State route Inter ate route U.S. route

Big Jack creek Triangle Quadrangle Long 116°02', Lat 42°34' Township T 10 S Range R 4 E Sec 18

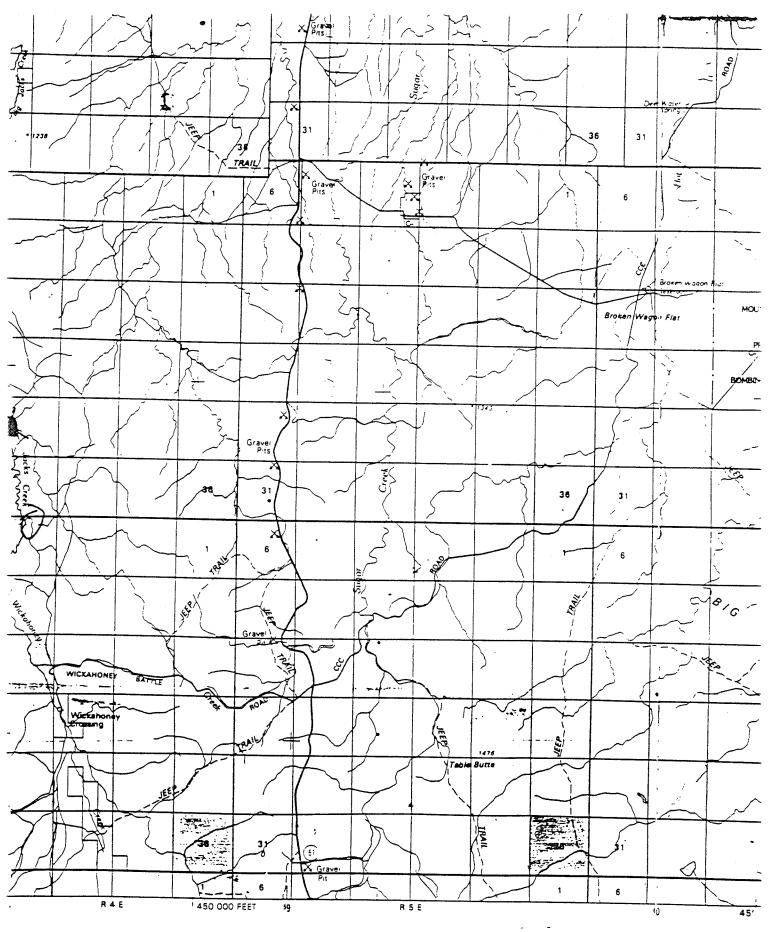
Cottonwood creek Triangle Quadrangle Long 116°05', Lat 42°32' Township T 10 S Range R 3 E Sec 27


Duncan creek
Triangle Quadrangle
Long 116'04', Lat 42'31'
Township T 10 S
Pance R 3 E Sec 36

TRIANGLE, IDAHO

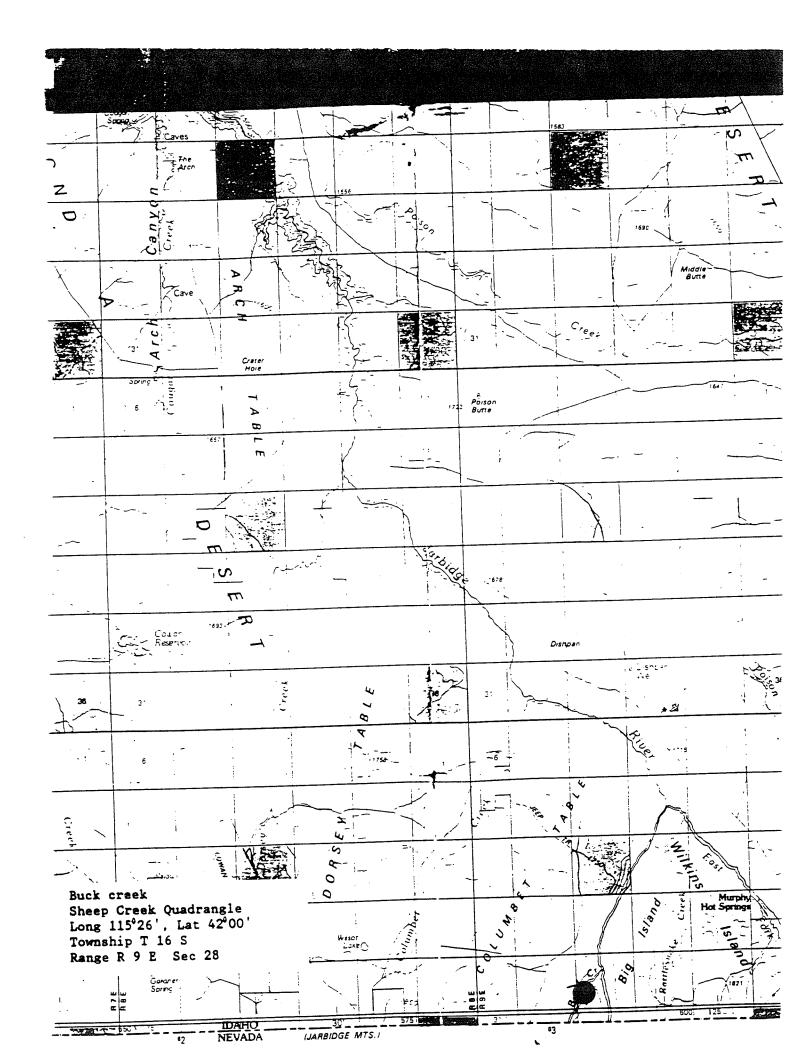
NE/4 JORDAN VALLEY (NK 11-5) 1:250 000-SCALE MAP N4230-W11600/30 x 60

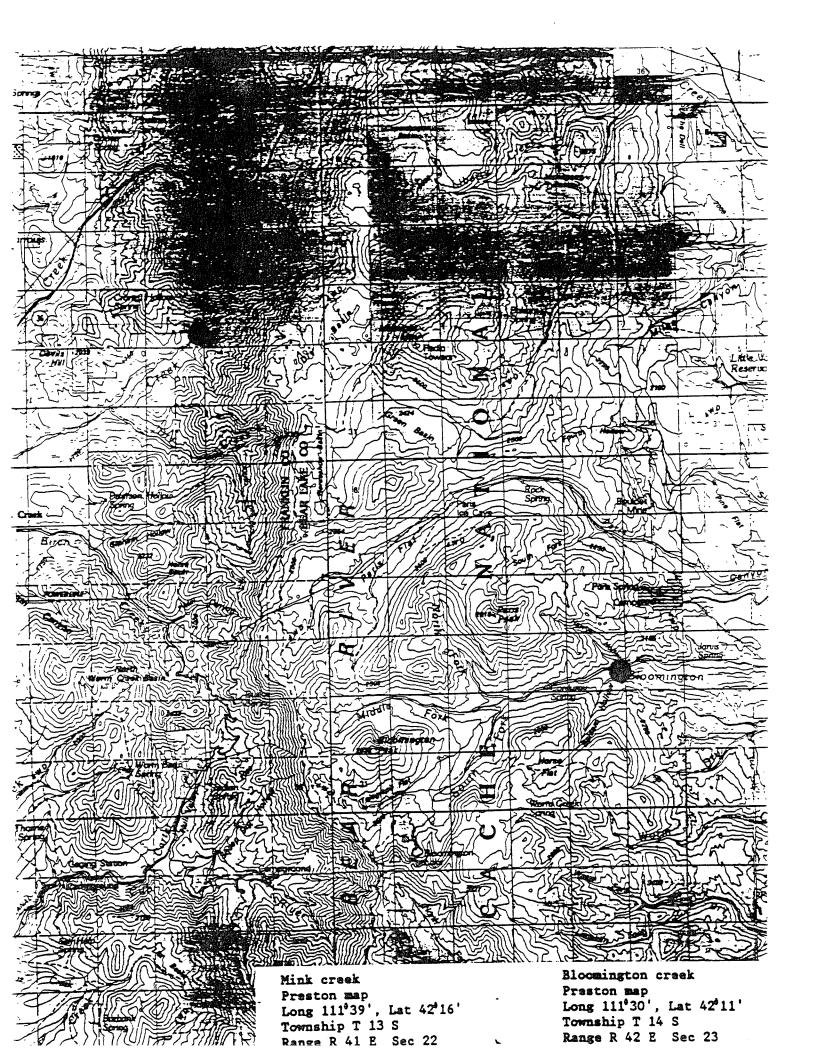
1978

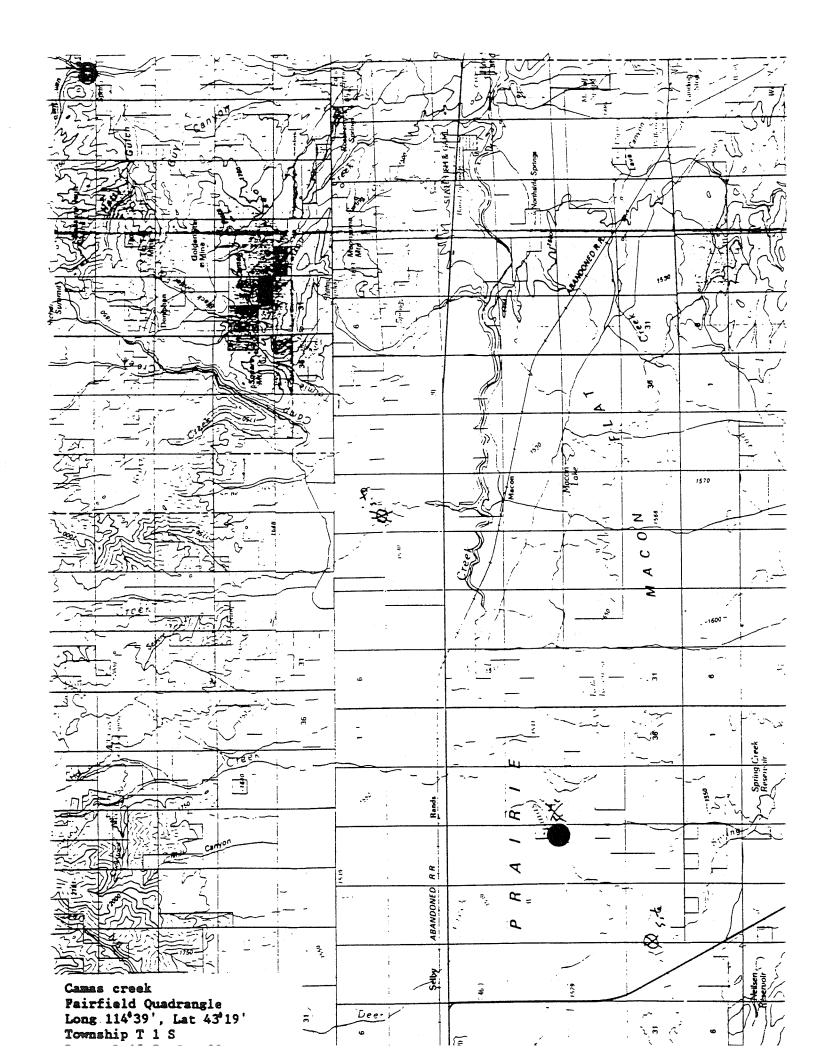

SURFACE MANAGEMENT STATUS

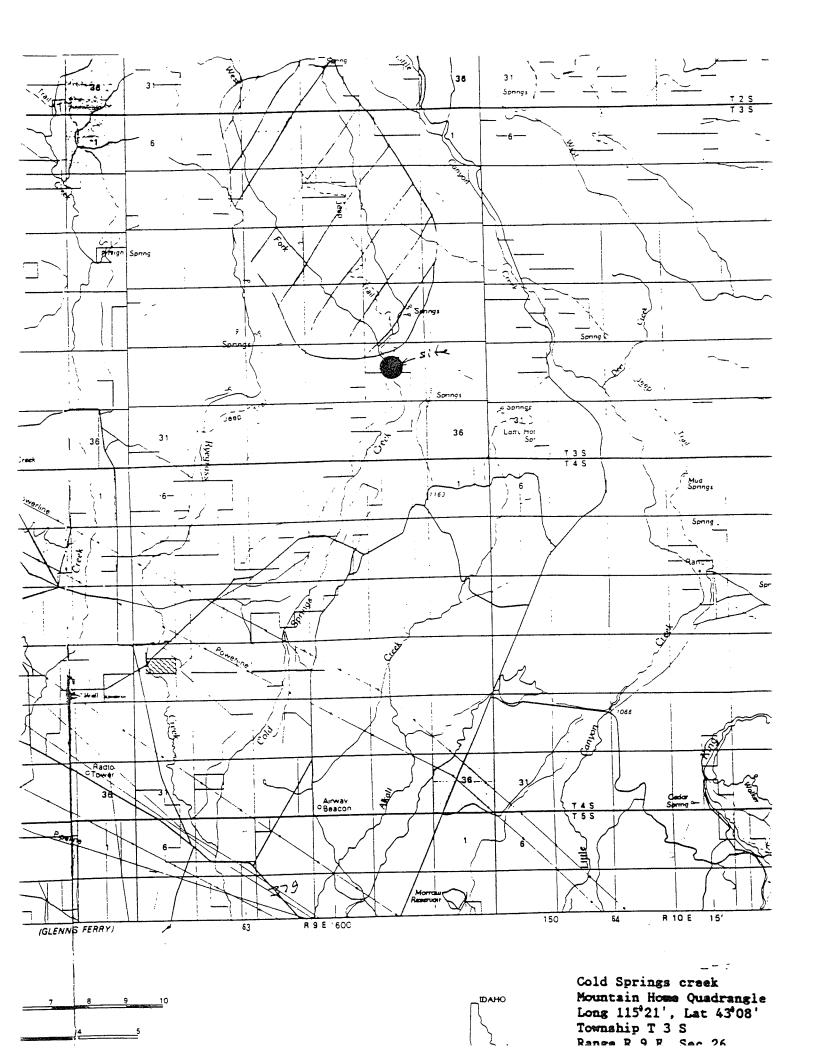
4 5 KILOMETERS MILES 0°16'1! 338 MILS 15000 10000 5000

GN - MN

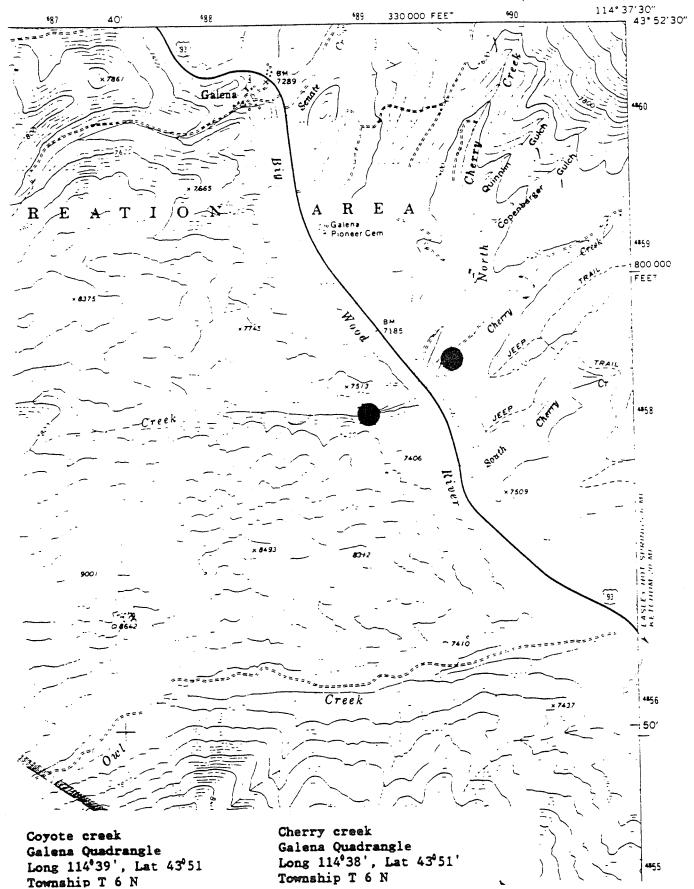

Big Willow creek Weiser Quadrangle Long 116°28', Lat 44°0 Township T 9 N Range R 1 W Sec 29

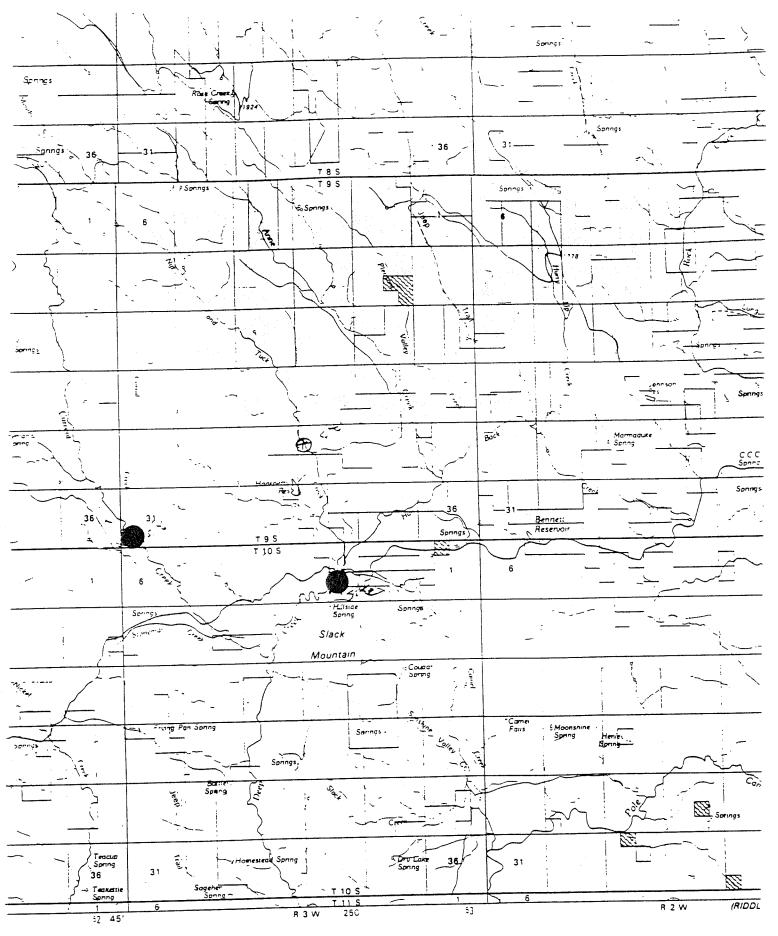



dited and published by the Bureau of Land Management


mpiled in 1975 from USGS 1:52 500-scale topographic maps .ad 1947-1959. See index for dates of individual maps

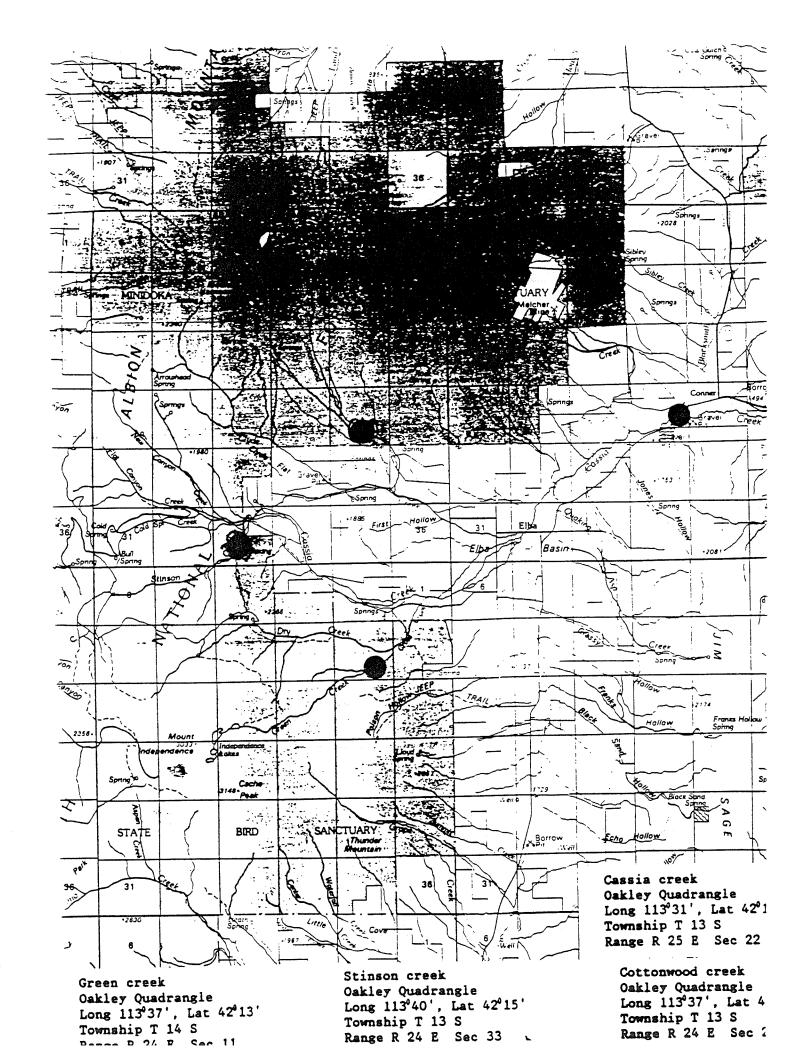
Big Jack creek Glenns Ferry Quadrangle Long 116'00', Lat 42'07' Township T 9 S Ranga R 4 E Sec 28

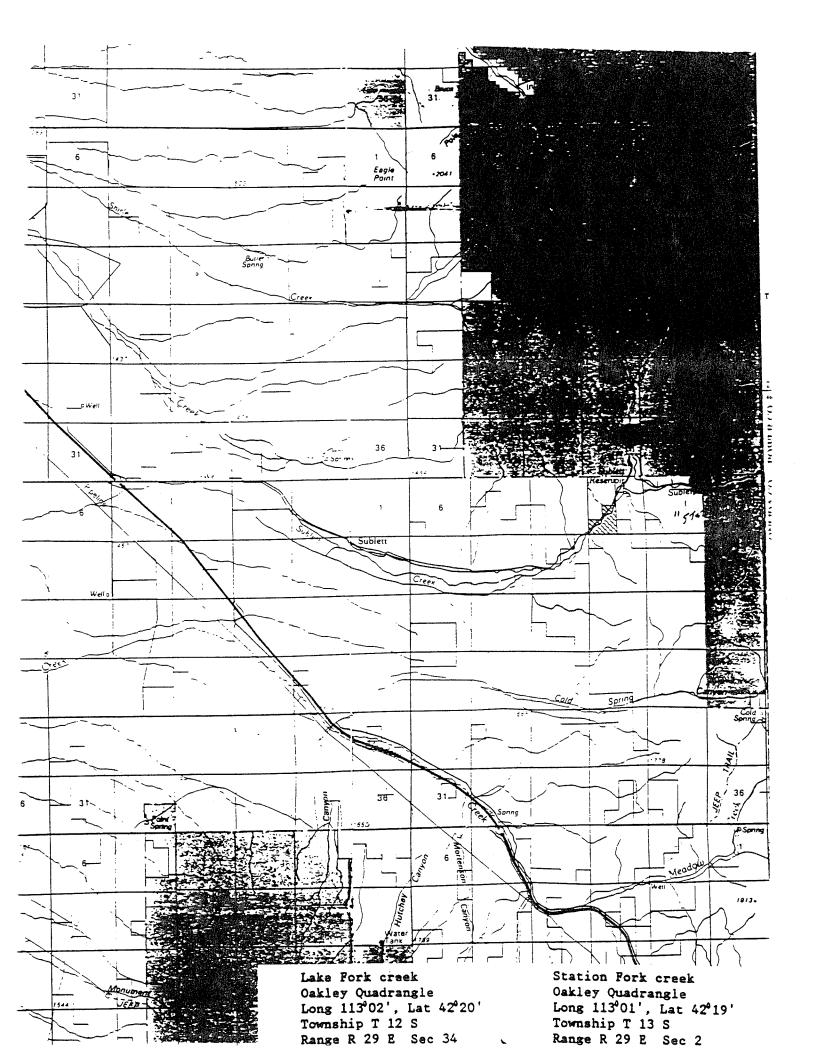


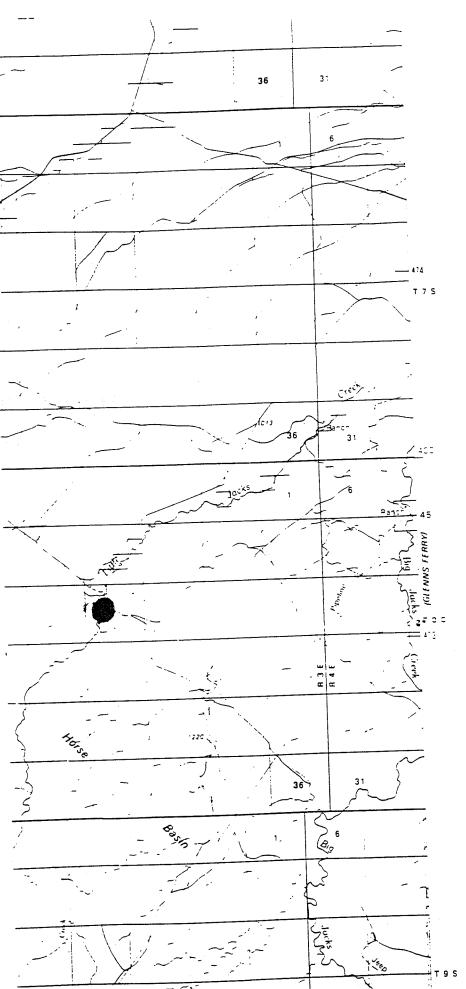


Wayne Minshall

GALENA QUADRANGLE IDAHO

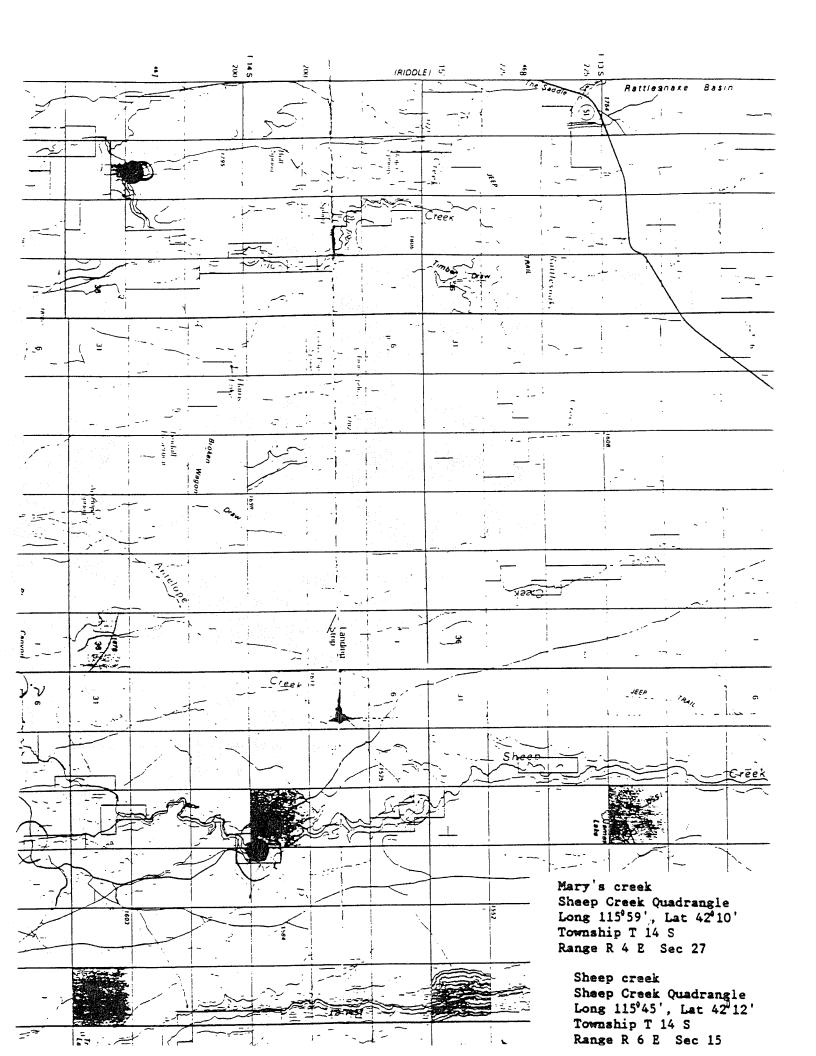

7.5 MINUTE SERIES (TOPOGRAPHIC)

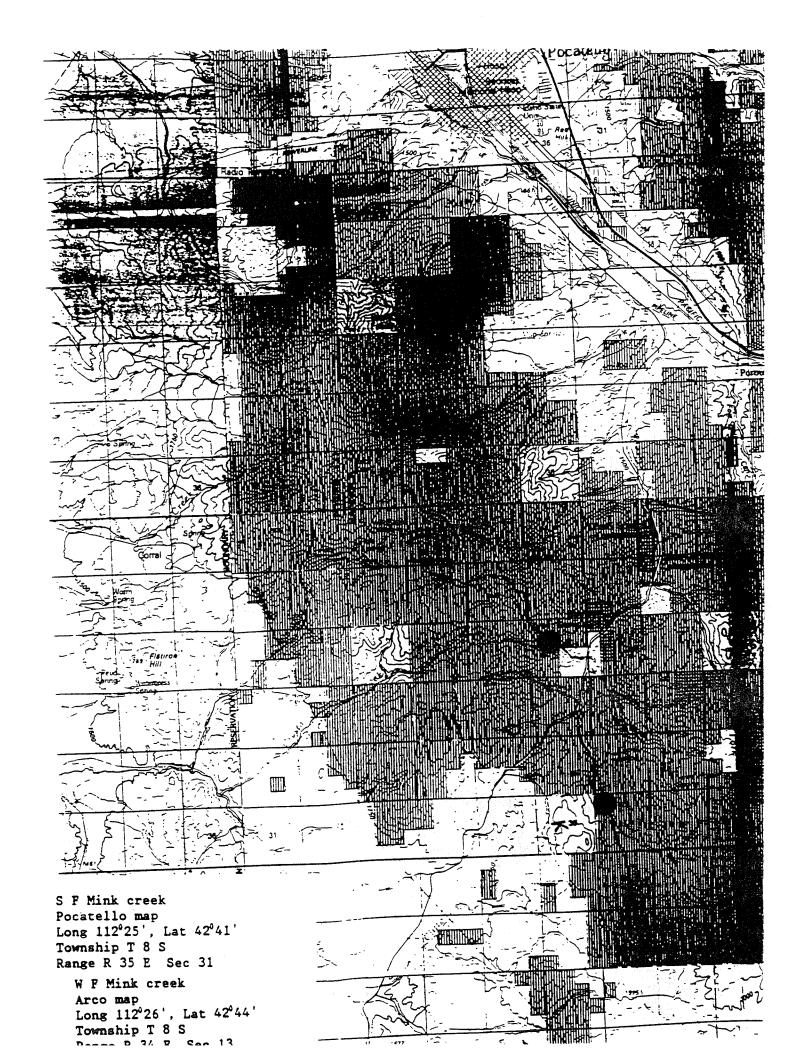


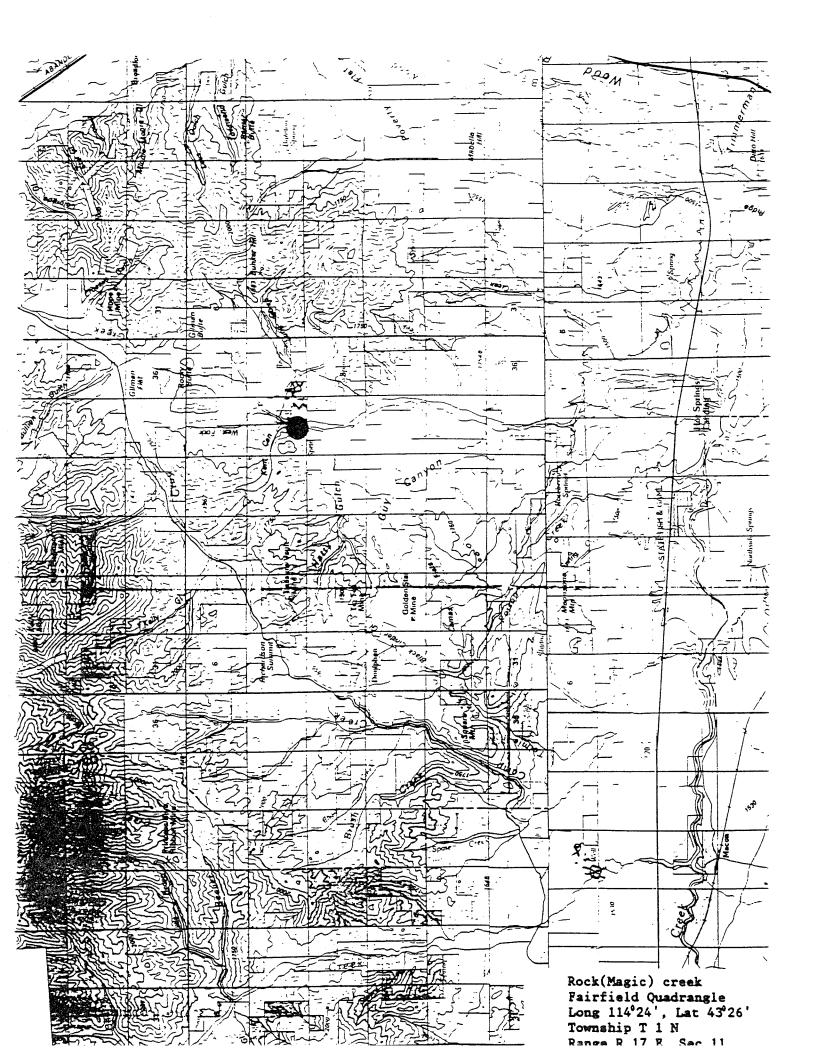


Current creek Triangle Quadrangle Long 116°45', Lat 42°35' Township T 9 S Range R 3 W Sec 31 Deep creek Triangle Quadrangle Long 116°41', Lat 42°35' Township T 10 S Range R 3 W Sec 3

1 0 1

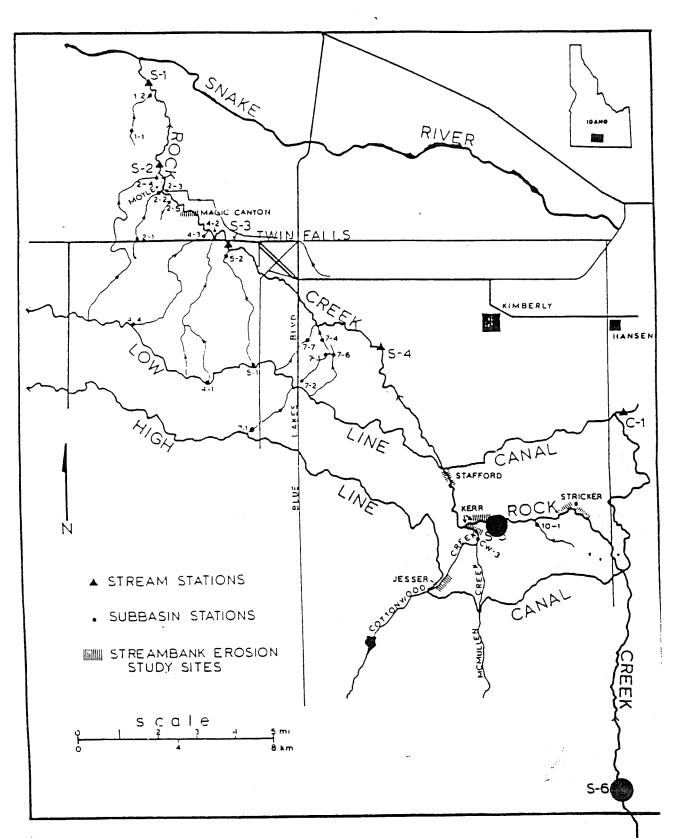
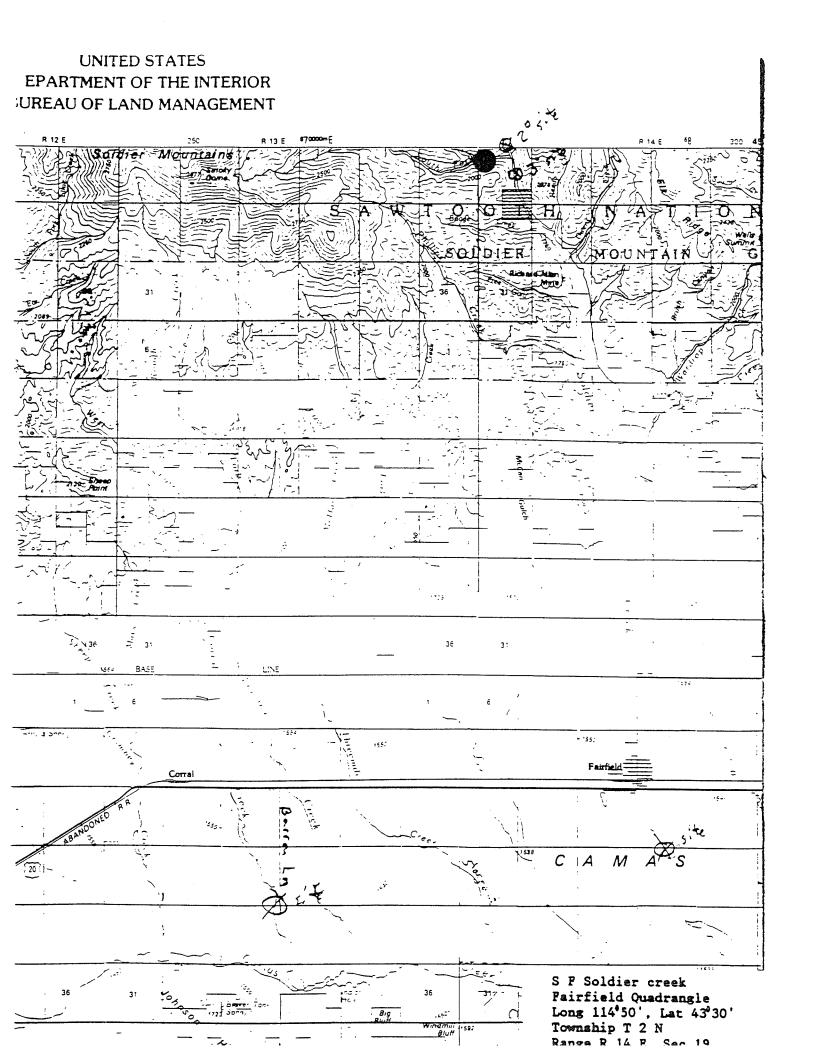
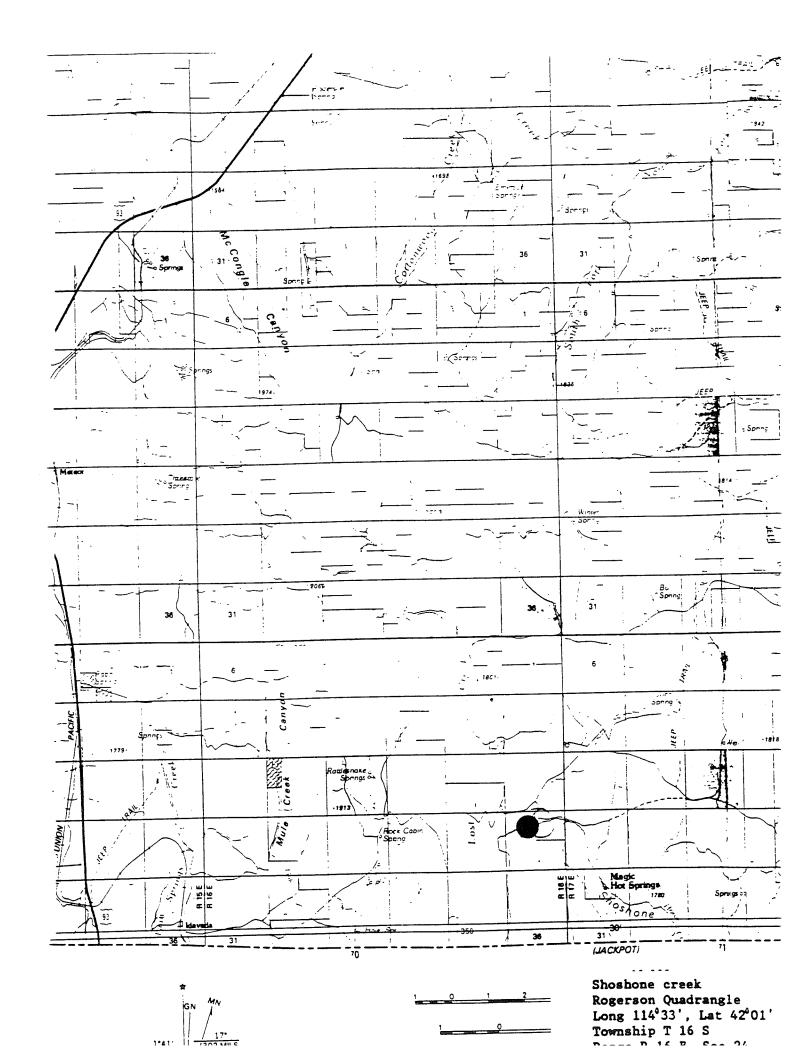
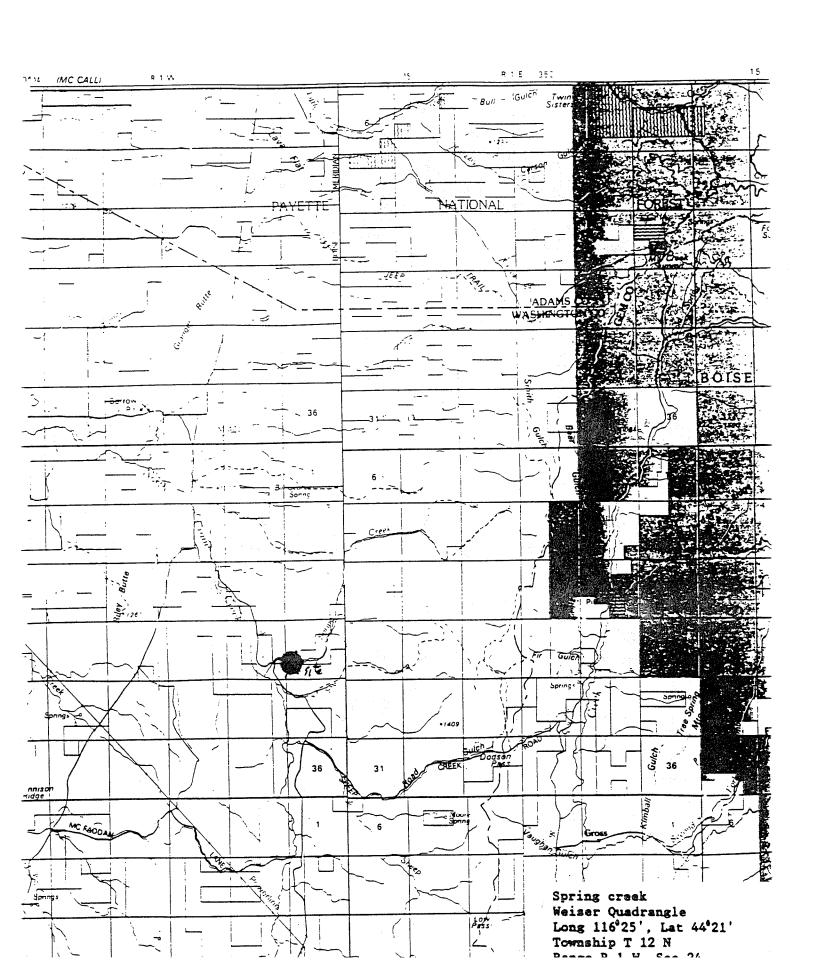


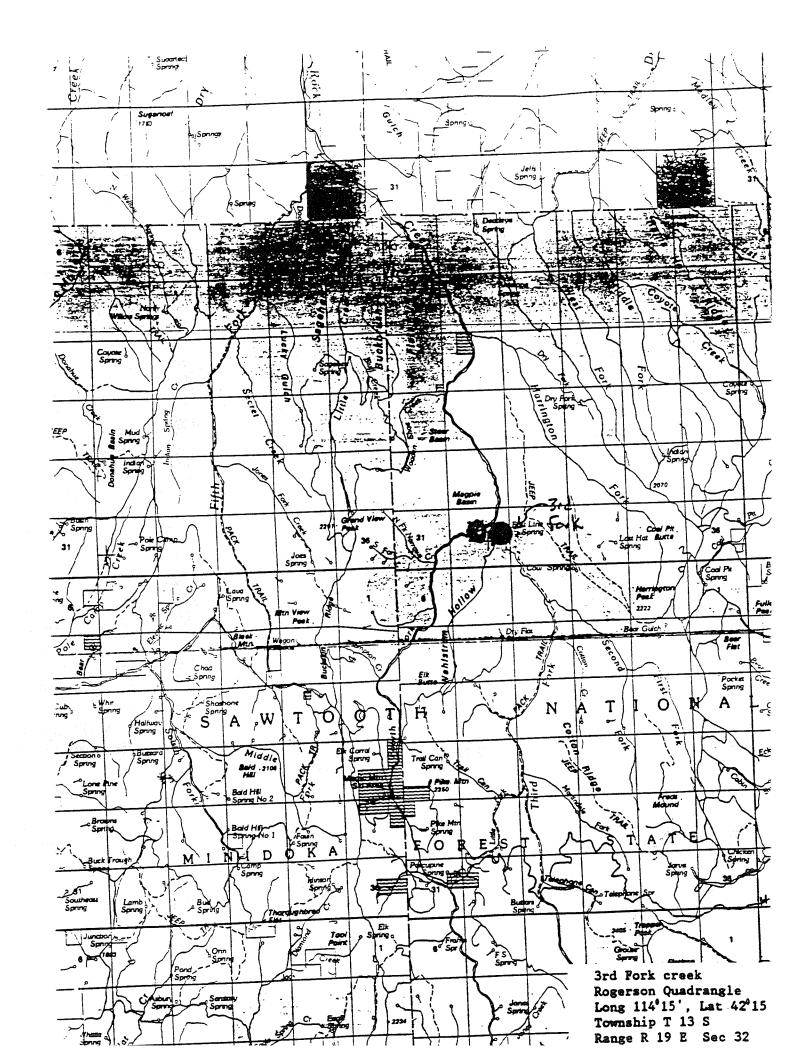


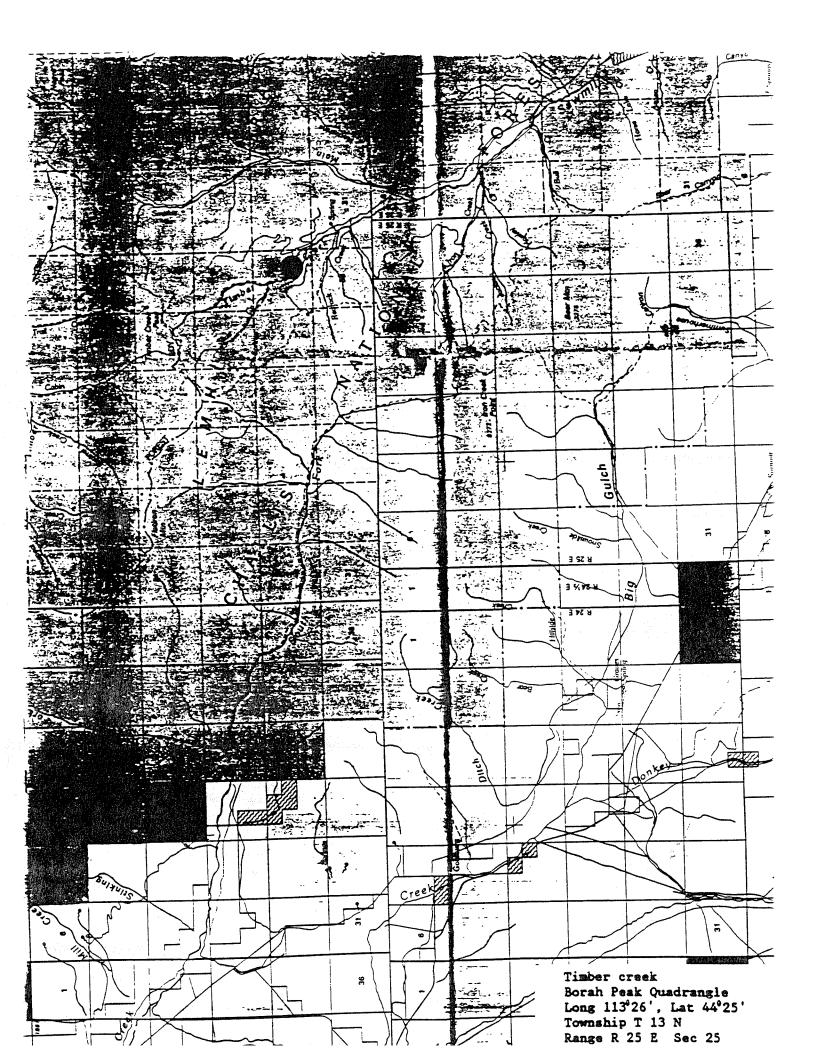

Corps of Engineers

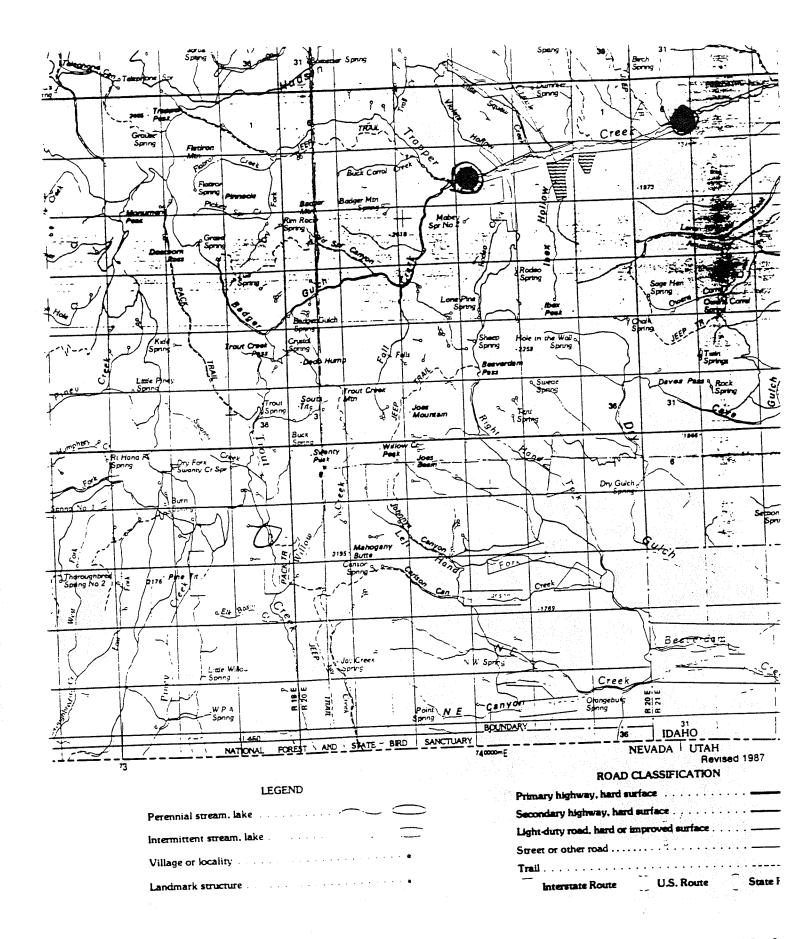
	NONEL
vildlife Retuges	
lankhead-Jones Land Use Lands L.U. Lands:	NONE.
Tennessee Valley Authority	NONE
Patented Lands	
State Lands	
Bureau of Reciamation	
Power Withdrawals and Classifications	NONE
Federal Agency Protective Withdrawals	NONE
Public Water Reserves	2000
Energy Research and Development Administration (ERDA)	NONE
Oregon & California Lands (O&C Lands () Administered Bu US Forest Service	NONE
Radio & Air Facilities	NONE
Miscellaneous	NONE
State, County, City, Wildlife, Park and Outdoor Recreation Areas.	INON
Acquired Lands (By Administering Agency)	NON

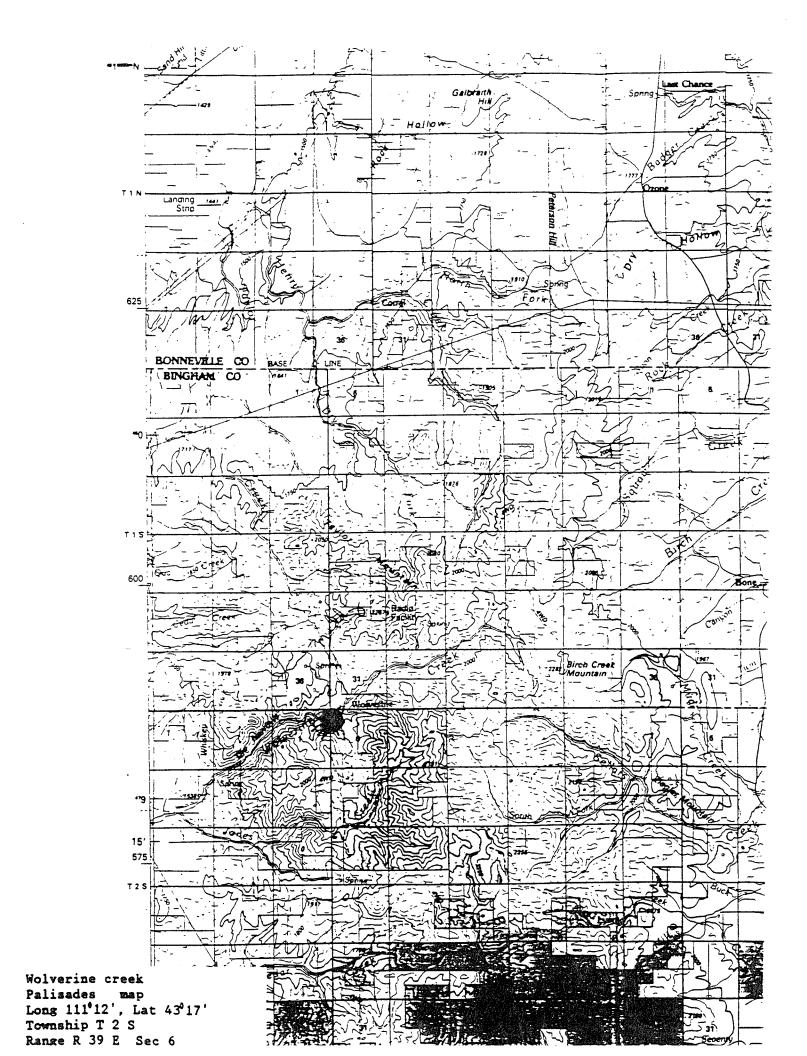
Little Jack creek Triangle Quadrangle Long 116°06', Lat 42°43' Township T 8 S Range R 3 E Sec 16


Figure 1 Mup of the Hock Creek Hural Clean Water Program study area. Twin Falls County, Idaho. Hock Creek and subbasin sample stations are shown as well as the areas selected for stream bank crosion. Study.


Rock(Twin) creek
Long Long Long
114°21'52" 114°18'15" 114°14'55"





Trapper creek Rogerson Quadrangle Long 114°06', Lat 42°08' Township T 15 S Trapper creek Rogerson Quadrangle Long 114°02', Lat 42°09' Township T 15 S ROGERSON, IDAHO-N

SE/4 TWIN FALLS (NK 11-6) 1:250 000-SCAL N4200-W11400/30x60

1978

SURFACE MANAGEMENT ST

Appendix B. Standardized coefficients for canonical variables from the Multiple Discriminant Analysis results of the habitat measures.

Variable	Root 1	Root 2
Bank Stability	962	.024
Canopy Cover	.706	-1.6 58
Specific Conductance	.796	 698
Discharge	.707	 698
Stream Cover	-1.228	027
pH	-1.016	.426
Chlorophyll <u>a</u>	.506	.283
Measured Width: Depth Ratio	-1.222	.225
Pool:Riffle Ratio	.710	.436
Temperature	.209	.107
Width: Depth Ratio	.419	.326
Slope	.058	.202
Periphyton AFDM	.277	.293
% Cover	117	.720
Embeddedness	254	-1.343
Orthophosphate	-1.154	1.817
Nitrate	-1.062	. 958
Substrate Size	1.388	.412
Eigenvalues	63.22	11.62
Percent explained	84.48	99.99

Appendix C. Standardized coefficients for canonical variables from the Multiple Discriminant Analysis results of the macroinvertebrate metrics data.

Variable	Root 1	Root 2	
EPT/Ch+O	078	.575	
Species Richness	.470	.105	
EPT Richness	837	.904	
Hilsenhoff Biotic Index	.834	077	
Biotic Condition Index	154	113	
EPT/C	742	169	
% Dominance	894	-1.580	
Shannon's Diversity (H')	521	-1.342	
Simpson's Index	.695	1.003	
S/F Ratio	.065	.098	
% Scrapers	- .575	003	
% Filterers	.598	.471	
% Shredders	506	129	
% EPT Taxa	2.069	.503	
% Ch+O	.229	.681	
% Chironomidae	262	206	
Eigenvalues	3.83	.84	
Percent explained	81.93	99.99	

Appendix D. Standardized coefficients for canonical variables from Multiple Discriminant Analysis results of the macroinvertebrate taxa data.

Variable	Root 1	Root 2	
Chironomidae	12998	.63433	
Oligochaeta	.26237	14231	
Baetis bicaudatus	64081	 75823	
Tricorythodes	.18580	56456	
Hyallela azteca	.06326	.16939	
Rhizelmis	2.12111	.97069	
Hydracarina	67259	49579	
Zapada	.27475	24929	
Paraleptophlebia	05628	25037	
Ostracoda	54382	.36370	
Cinygmula	.50531	47462	
Turbellaria	.49857	.85182	
Epeorus albertae	 33950	22748	
Simulium	.71450	.05444	
Hydropsyche	.33869	 50633	
Brachycentrus	11112	.01440	
Ryacophila acroped	.48433	.03101	
Pisidium	1.00642	.77338	
Drunella coloraden	.43908	00327	
Seratella tibiali	02954	16916	
Ryacophila acroped	.62982	.45877	
Glossosoma	59205	.38426	
Heterlimnius	.28337	16549	
Ameletus	19966	.22382	
Ephemerella	-1.17913	87037	
Ceratopogonidae	.01922	.38797	
Clostocea	09746	1.18323	
Alloperla	.88788	.90066	
Hexatoma	.91045	.94014	
Optioservus	09785	.51040	
Antocha	12835	.77781	
Eigenvalues	6.22	3.87	
Percent explained	61.63	99.99	

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # STATE REP #	IM 200720 QUAL.	Sp 24 900718 QUAL.	1m 200815 QUAL.	Sp 23 900619 QUAL.	Up 900620 QUAL.	Up 900614 QUAL.	1m 200618 QUAL.	Im 900620 QUAL.	Im 900621 QUAL.	1m 200619 QUAL.	Im 200619 QUAL.	Up 900717 QUAL.	Lo 200721 QUAL.	Sp 900718 QUAL.	Up 900615 QUAL.	Up 900614 QUAL.	Lo 200613 QUAL.	Lo 200613 QUAL
PREDATORS									•									
Carabidae Alloperla Atherix yariagata Beloneuria Calineuria						5			5			1	5		2	1	3	1
ce interia hioroperlidae kratopogonidae krasenia Cordulegaster Jecapoda Jicconota				3			2	7			3	1						
moididae	10					2	1				·				1		4	
erridae ilutops sp lesperoperla pacif lexatoma lydracarina	ica 1		: 63	11	8 1	3	12	2		6	5		4	6	4		18	20
ydracarina soperla sp. imhophila lematoda reodytes erlodigae lanariidae	·		1	3		2		6							2			
	1										9							
Skwala Staphylinidae Suwallia sp. Rhyacophila angeli Rhyacophila hyalin Rhyacophila vaccua Rhyacophila vagri Rhyacophila verrul Rhyacophila vespul Rhyacophila colora I pulidae Lalopteryx	ta nata a a a a				1	2	18					2						
sephenidae urbellaria	idens 13		. 2			14			3	1	5		1				1	3
ugus laucoridae ascadoperta phiogomphys benagrionidae ialis	1			9				15	28	2	5						·	·
Siališ Amphiagrion Argia Hirudinidae Corixidae	į	6								5	8 3 1		1					
GATHERERS	•																	
Ameletus sp. Ameletus cooki Ameletus similor Ameletus velox Amiocentrus Antocha				1	4	1					4	8	16		2		3	2
Cleptelmis sp. Dixa Elmidae		1								40								
Amiocentrus Antocha Chelifera sp. Cleptelmis sp. Dixb Elmidae Dupiraphia Rhizelmis Jemerodromia Ephemerella	4	2	5	31	- 91		60		44	19 33				4	166	6	5	31

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	1M 900720 QUAL	Sp 900718 QUAL	1m 900815 QUAL	Sp 900619 QUAL.	UP 900620 QUAL.	900614 QUAL.	1m 28 900618 QUAL.	1m 26 900620 QUAL.	1m 900621 QUAL.	200619 QUAL.	90009	900717 9UAL	900721 QUAL.	SP 20 900718 QUAL.	Up 900615 QUAL.	Up 900614 QUAL.	200613	2006 18 2006 13
phemerella aurivi phemerella grandi phemerella infrec tychoptera eterlimnius yallela azteca finitis ara so.	lli s puens	169		5		1		5	6	6		122		38	8	1	18	3 64
finitis ara sp. epidostoma eptophlebia arpus sp. tratjomyidae	1	5	3															
rinitis are sp. epidostome epidostome eptophlebia atpus sp. tratiomyidae abanidae ipula sp. ptioservus dontyomyia araleptophlebia ericoma olycentropus			42 1		,						35 14	1	7	4				
yacophila acroped erratella tibiali altzevia ricorythodes onielmis tenelmis	11		1	127		13		2	. 1	29	24	2	45 20		1			
loselyana aenis itenelmis CCRAPERS Baetis bicaudatus	20		-		57	, 22	16	. 15	; 78	s 34				10	56	. 3	3 8'	9 12
aetis bicaudatus aetis intermedius aetis tricaudatus invymula colorader runella doddsi runella flavilin runella spiniferorus sp.	s 23 s nsis ea a	5	7 5	13	٠, ٢	59 28		, ,	, ,	, 34	6	10						
rumetta spinitera peorus sp.eptivus peorus iron, peorus longimanus peorus albertae phemerella inerm luminicola virens astropoda lossosoma	s s is				59	35	- 16		1	3	27		3		12	: 3		7 4
astropoda lossosoma eptageniidae ydroptila elicopsyche eothremma sp. eophylax ligophlebodes sp lephariceridae yralidae hithrogena	13	· <u>1</u>	: 64			3	1	ž	<u> </u>	1	ģ	11	21	10	4		2	
tenonema sp. audatella hetero		•			12	3						1						
	٠,					3	;											
lpstocea sp. lbstocea sp. phemerella infred imnephilidae licrasema nocosmoeus sp. sychoglypha teronarcys califo	quens	5	1		3	3	1	l	18	3		5			3		2	2

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

TE LOCATION	Up 900614 QUAL.	Lo 9008 QUAI	17 826 L.	Lo 900825 QUAL.	Sp 200825 QUAL.	Sp 21 900830 QUAL.	1M 900B15 QUAN.	Lo 48 910625 QUAN.	10625 910625 9UAL.	Lo 91062 QUAN.	7 Lo 2 9106 QUAN	46 L	10624 JAN.	UP 39 910624 QUAN.	Up 910624 QUAL.	1m 910623 QUAN.	1m 910623 QUAL	Up 910627 QUAN.	Up 37 910627 QUAL.	1m 49 910627 QUAN.	1m 49 910627 QUAL.
PREDATORS						4													1		
arabidae Illoperla	1	1	2			1								10	47	,		2			
lloperla therix yariagata eloneurla alineurla hloroperlidae eratopogonidae laasehia ordulegaster ecapoda iccronota ytiscidae mojdidae			4					12					5	3	3	;					1
ntoropertigae eratopogonidae laasehia			1					1	ā	2 1	7	1	1	8							
ordulegaster ecapoda ecapoda				1				5	i	?			4				1	2		5	15
ytiscidae mpididae			1	·													,			,	10
erridae lutops sp esperoperla pacifica			'					,				<i>,</i> c	/7	1	3	•	•	ŀ	3	i	
everoma			1	18	14	13		2		3		13	47	5	9		1	i 11	. 2		
ydracarina soperla sp. imhophila ematoda	1	}						5	;		1	3	2	2		1		ā	!	1	
ematoda recovtes lanariidae lanariidae etvena bradleyi kwala taphylinidae uwallia Sp. hyacophila hyacophila angelita hyacophila vaccua hyacophila coloradensi hyacophila coloradensi hyacophila coloradensi							5	i													
etvena bradleyi kwala tanbulinidan			10	2								8	_					•	i		
uwallia sp. hyacophila													3		;	2					
hyacobilla angelita hyacobilla hyalinata hyacobilla vaccua	•	1										8							l		
hýacobnila vagrita hyacobnila verrula hyacobnila vescula														1							
hyacobnila coloradensi ipulidae	s			2								1		1		•					
urbellaria	4	4		•		140)						. 1						7 3	5	
lugus laucoridae																					
ascadoperla phiogomonus benagribnidae			3	11 7				4		5 !	51										
iališ Imphiagrion Irgia Iirudinidae			-	4														_			_
lirudinidae Corixidae				1	ā	2		5	5	5								2			2
ATHERERS																57	2 8	. :	5	1	1
Ameletus sp. Ameletus cooki Ameletus similor Ameletus velox								10	1	3	11					26	2 01	J			
Ameletus velox Amiocentrus Antocha				5		3	;		•	•	. ,	7							;	}	
helifere sp. Leptelmis sp.																	1		,	I	
Ameletus vetox Amiocentrus Antocha Chelifera sp. Cleptelmis sp. Dixa Emidae Dubiraphia Rhizelmis Jemerodromia	71	z	6	2													ı				7
Rhizelmis Hemerodromia Ephemerella	33	J		1	9	i				5	2										′

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	1M 29 200720 QUAL.	Sp 900 9UA	718	1m 200815 QUAL.	Sp 900619 QUAL.	Up 900620 QUAL.	Up 900614 OUAL.	1m 200618 QUAL.	900620 QUAL	1m 900621 QUAL	900619 QUAL.	1m 27 900619 QUAL.	Up 8 900717 QUAL.	200721 QUAL.	Sp 20 900711 QUAL.	900615 QUAL.	900612 QUAL.	200613 SUAL.	200613
Zapada sp. Zapada sp. Zapada cinctipes Zapada oregonesis Palacappia Grensia Dicosmoecus Chyranda Amphineumura Yoroperla brevis	1		4	5	3		1				14		3	25 24		3	1	6	5
FILTERERS																		_	
Arctopsyche Brachycentrus Hydropsyche Nectopsyche	37		1		22	, 1	, 3	12	} .	60	31	59	34	. 1	8	8		1 5	5 51
Hydropsyche Nectopsyche			5	32				,,,	,	. 3		-			9	6	i	32	2 22
Paraboda Parapsyche elis Pisiojum Simulium Prosimulium			6	32	8		41		4 13	5 4			16	5		Ž	28	3 (8 5
Prosimulium Physa Gyraulus	5		1	5	6	,				1	11	l							
MINERS											7.7		, ,.	7 5	7 26	7 7		4	6 5g
Chironomidae	110	}	22	38	35	18	3 25	P	§ 7	9 14	1	58	4	5	Z 24	3 1		4 3	5 6
Oligochaeta Eubranchiopoda Hymenoptera Diptera Tubifex	-1						ä	2	3	1 '	1	i							
MISCELLANEOUS																			
Homoptera Fontelicella Clinocera Phychodidae Hydrobius sp.				į															

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	Up 900614 QUAL.	Lo 900826 QUAL.	Lo 900825 QUAL:	Sp 200825 QUAL.	Sp 21 200830 QUAL.	IM 900815 QUAN.	Lo 48 910625 QUAN.	Lo 48 910625 QUAL.	Lo 910622 QUAN.	Lo 46 910621 QUAN.	Lo 910624 QUAN.	Up 910624 QUAN.	Up 39 910624 QUAL:	1m 210623 QUAN.	1m 910623 QUAL.	Up 37 910627 QUAN.	Up 37 910627 QUAL.	Im 910627 QUAN.	Im 49 910627 QUAL.
Ephemerella aurivilli Ephemerella grandis Ephemerella infrequens Ptychoptera Heterlimnius Hypliela azteca Crinitis Larajsp.	2			64		2	30	24			5 13		2		2	68	18	21	2
Larg sp. Lepidostoma Leptophlebia Narpus sp. Strationyidae Iabanidae Iipula sp. Optioservus Odontyomyia Paraleptophlebia		40	62		1	1	15	4		37 1			1		4	12 5	2 10		6 2
Pericoma Polycentropus Ryacophila acropedes Serratella tibialis Zaitzevia Tricorythodes Gonielmis Stenelmis Moselyana Caenis Stenelmis		2	19	21	7		28	70		1		1	4	109	141	9	¹ Ý		14
SCRAPERS Baetis bicaudatus Baetis intermedius	40	65	2		13					49	25	5 10) 59	2	!	7	32	: 82	! 191
Baetis tricaudatus Cinygmula Druhella coloradensis Drunella doddsi Drunella flavilinea Drunella spinitera	20	1			1	1		Î	•		1	15	17 1 8 1		2	37	17	20) 15
peorus sp. peorus deceptivus peorus iron peorus longimanus peorus albectae phemerella inermis fluminicala virens	8 10	7	4			15				10	. 2	. 1	i 86			8	19	1	
Gastropoda Glossosoma Heptageniidae Hydroptila Helicopsyche Neothremma sp. Weophylax Olispohiebodes sp. Blephariceridae Pytalidae Rhithrogena	2	15 7	4	43		1	15			1	10 8					2	2		
Blephariceridae Pytalidae Rhithrogena Stenonema sp. Caudatella heterocaudat SHREDDERS	a		3		1							1	2			2			
Acentria							15	48		1	3	;				1	į		
Capnia Clostocea Sp. Ephemerella infrequens Limnephilidae Micrasema Onocosmoeus sp. Psychoglypha Pteronarcys californica	12 ပ _{ို}	1	. 1	Į			3			1	2					1/2	14		2

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	Up \200612 900612 90AL	L.	0 17 00826 JAL	Lo 90082 QUAL	\$p 5 90 90	0825 AL.	Sp 900830 QUAL .	IM 900815 QUAN.	Lo 910625 QUAN.	1062 91062 QUAL.	8 910622 910622	LO 46 910621 QUAN.	LO 45 910624 QUAN.	UP 39 910624 QUAN.	Up 39 910624 QUAL.	910623 QUAN.	910623 QUAL.	Up 37 910627 QUAN.	Up 37 910627 QUAL.	1m 49 910627 QUAN.	910627 OUAL.
Zapada sp. Zapada cinctipes Zapada oregonesis		2	41	<u>-</u>			3								1			14	34		
Paracaphia Grensia Dicosmoecus Chyranda Amphineumura Yoroperla brevis	•	4			5	3						1									
FILTERERS														1							
Arctopsyche Brachycentrus Hydropsyche Nectopsyche	2	?	4		2		1	18 2	10)	3	13	14	·	1	12	-	•	1		
Hydropsyche Nectopsyche Ostracoda Parapsyche elis Pisidium Prosimulium Prosimulium Bhysa Gyraulus		4	2		1	4 20	1	3				1			ä	27	7 8	3	1	4	4 7
MINERS							4.7		47	, 1 [.]	12 26	6 63	55		,	18	3 28	2 2	39	3 13	3 33
Chironomidae Oligochaeta Eubranchiopoda Hymenoptera Diptera Tubifex	10	4	10	11	3	105	18	11	41	· '	12 26	4	5 55	198	š 1 [.]	10	0 40) 6		3 17:) 14
MISCELLANEOUS																					
Homoptera Fontelicella Clinocera Phychodidae Hydrobius sp.					1	3		876	3			10) 10)							1

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	Im 910623 QUAN.	1m 910623 QUAL	Im 910623 QUAN.	1m 910623 QUAL.	Im 910628 QUAL.	Up 36 910629 QUAN.	Im 910628 QUAN.	Up 35 910629 QUAN.	Lo 910624 QUAN.	Up 43 910801 QUAL.	Up 43 910801 QUAN.	Up 40 910801 QUAL.	Up 40 910801 QUAN.	Up 910829 QUAN.	Up 210830 QUAN.	Up 910830 QUAN.
PREDATORS																
Carabidae Alloperla	1	1	. 1							8	7	12	31	11	3	6
Alloperta Atherix yariagata Beloneuria Calineuria Chloroperlidae Ceratobogonidae Claasehia Cordulegaster Decapoda									17			11	1		8	
Chloroperlidae Ceratopogonidae	1		1	1							1		2			
Claasenia Cordulegaster Decaroda																
Dicronota Dytiscidae	3	1				1			1							
pytiscidae Empididae Gerridae Glutops sp Hesperoperla pacifica				ı		•	2	1		1	1			5		2
	1		17	41	29	3	8	}	7	.4	3	ş	3	5 48	8	
Hydracarina Isoperla sp. Limhophila Nematoda	1		,	2	2	3		7		10	16	3				1
Nematoda Oreodytes	5		4	4			4		2		8		4	2		
Oreodytes Perlodidae Planaridae Satuani bradlevi									•							7
Pianariidae Setvena bradleyi Skwala Staphylinidae Suwallia sp. Rhyacophila angelita Rhyacophila hyālinata Rhyacophila vāccua Rhyacophila vāccua Rhyacophila vērrula Rhyacophila verrula Rhyacophila verrula Rhyacophila coloradensis Tipulidae Calopteryx Psephenidae Turbellaria Tugus							1				1					
Suwallia Sp. Rhyacophila Rhyacophila angelita				1		1	2	2			1			11	12	
Rhyacophila hyalinata Rhyacophila vaccua				1		5				3	7	3	3		4	
Rhyacophila vagrita Rhyacophila verrula Rhyacophila vespula				•		•				2	3	1		1	,	4
Rhyacobiila coloradensis	S 1									1				1		
Calopteryx Psephenidae Turbellaria			2		1	11		22	7	6	2	2	2	8	7	17
Cascadoperla Ophiogomphus Chenagribhidae Sialia				4					1							
ANKALIUSTOTT						2		31								
Arbia Hirudinidae Corixidae				1												
GATHERERS				·												
Ameletus sp. Ameletus cookj		1								2	3		3		1	
														6		
Ameletus velox Amiocentrus Antocha Chelifere sp. Cleptelmis sp.			4		9	31		2	2 8							2
									•							
Elmidae Dubiraphia Rhizelmis															_	
Rhizelmis Hemerodromia Ephemerella										4		2	1		2	

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

THE LOCATION ATION ATE	Im 910623 QUAN.	1m 910623 QUAL.	Im 910623 QUAN.	Im 910623 QUAL.	Im 910628 QUAL.	UP 36 910629 QUAN.	Im 910628 QUAN.	Up 910629 QUAN.	910624 QUAN.	UP 43 910801 QUAL.	UP 43 910801 QUAN.	Up 40 910801 QUAL.	UP 40 910801 QUAN.	UP 38 910829 QUAN.	Up 41 210830 QUAN.	UP 42 910830 QUAN.
phemerella aurivilli phemerella grandis phemerella infrequens tychoptera eterlimnius yallela azteca finitis	1		8	6	18	6	1	50	160	6			6	1	1	4
ara sp. epidostoma epidostoma eptophlebia arpus sp. tratjomyidae abanidae ipula sp. potioservus dontyomyia ericoma ericoma eleptophlebia ericoma elycentropus kyacophia acropedes serratella tibialis firicorythodes conielmis toselyana Caenis Stenelmis	30	62	2 1	5	1	14	14 1 5	2	1 15	8	25	3	} 12 12 12 12 12 12 12 12 12 12 12 12 12	24 14		
SCRAPERS	161	74	149	208		61		76	35		,	7.	2 26	37	. 4	. 31
Bactis bicaudatus Bactis intermedius Bactis tricaudatus Binygmula Binygmula Binunella coloredensis Brunella doddsi Brunella tlavilinea Brunella spinifera			19	17	152		219	82		78 25	5 50			40	24	, 7
runella flavilinea runella spinifera peorus sp. peorus deceptivus peorus jron					11	24				5	5 6	2!	5 12	!	1	10
peorus sp. peorus sp. peorus deceptivus peorus longimanus peorus sp. peorus deceptivus peorus longimanus peo	. 3	. 1			•	•				•	1		1			
Cuminicola virens iastropoda ilossosoma leptageniidae ydroptila elicopsyche eothremma sp. lepohylax lipohlebodes sp. lephariceridae yralidae	3		1	3	;			15								e
Repphylan Ilgophiceridae Pyralidae Pyralidae Rhithrogena Steponema Sp. Caudatella heterocaudat	•					1		1	Ş	5					18	} ;
SHREDDERS	_								,	1						
Acentria Capnia Clostocea sp. Ephemere la infrequens Limnephilidae	(* ₁				;	2			å		2 ·		3	43	5 d	
Micrasema Onocosmoeus sp. Psychoglypha Pteronarcys californica			1				1									

Appendix E. Absolute abundances of macroinvertebrates collected from each site. Qual.=qualitative sample; Quan.=quantitative sample.

SITE LOCATION STATION # DATE REP #	1 m 210623 QUAN.	Im 910623 QUAL.	Im 910623 QUAN.	Im 910623 QUAL.	Im 910628 QUAL.	Up 910629 QUAN.	Im 910628 QUAN.	Up 910629 QUAN.	Lo 910624 QUAN.	Up 43 910801 QUAL.	Up 43 910801 QUAN.	Up 910801 QUAL.	Up 910801 QUAN.	Up 38 910829 QUAN.	Up 210830 QUAN.	Up 910830 QUAN.
Zapada sp. Zapada cinctipes Zapada cinctipes Zapada oregonesis Paracapnia Grensia Dicosmoecus Chyranda Amchineumura Yoroperla brevis	Ż9	17		1		5	1	7		10	_	20	16	6	15	4
FILTERERS																2
Arctopsyche Brachycentrus Hydropsyche Nectopsyche			1		38	ξ	13		13				1			
Östracoda Parapsyche elis Pisiqium	3	8								12	5	9	5		28	3
Pistojum Simulium Prosimulium Physa Gyraulus	108	142	4	3	5 1	3	3	2		8	3	12				
MINERS																
Chironomidae Oligochaeta Eubranchiopoda Hymenoptera Diptera Tubifek	14	6	6]	22	11	13	7	15 3	1 8	48	3 4	19	. §\$	21	3 8	126
MISCELLANEOUS																
Homoptera Fontelicella Clinocera Phychodidae Hydrobius sp.			1	2												

Appendix F. Species names for macroinvertebrate notations in Tables 10 and 11.

CINYG SIMU EPEO CHIR BAET DRCO
SIMU EPEO CHIR BAET
EPEO CHIR BAET
CHIR BAET
BAET
DRCO
TURB
ELMI
SETI
DRDO
RHAC
CALI
CAPN
MICR
BRAC
OLIG
PAEL
RHIT
HYDRA
GLOS
RHYA
ZAPA
ARCT
HETE
AMEL
HYDRO
EPHE
PISI
GREN
ALLO
HEXA
PARA
CERA
HYAL
TRIC
AMPH
ANTO
HDROP
OSTR
CLOS
OPTI
SIAL
PTCA
OPHI
FONT